
Song Wang
Associate Professor

EECS, York University, Canada

wangsong@yorku.ca

eecs.yorku.ca/~wangsong

github.com/waooog

From Prompt Enhancement to Fine-Tuning:
Improving Automatic SE Tasks with LLMs

1

Automatic SE in the Era of LLM

Write tests for the following code:

LLMs
Code

Write a function to sort a list of elements

def compare_two_integers(a, b):
if a < b:

return f"{b} is bigger"
elif a > b:

return f"{a} is bigger"
else:

return f"{a} is equal to {b}"

Repair the following issue:

Patch

Test Cases

Prompts: NLP + Code (optional) Solutions

……..

……..

User

LLM-based Automatic SE + RAG

User

LLMs

Prompts: NLP + Code (optional) Solutions

……..

Retriever

Similar
code +test

Similar
code

Similar
issue + patch

……..

Code

Patch

Test Cases

Our recent work on advancing LLM-based SE

Enhancing
Prompts via RAG

Enhancing
Prompts via clarifying

and optimization

Fine-tuning small
LLMs for SE tasks

Ensuring the
reliability of

benchmark data

ClarifyGPT: Empowering LLM-based Code Generation
with Intention Clarification

• Auto Code Generation

➢ Converting user-provided natural language
requirements to executable code

➢ Improving software development efficiency

https://survey.stackoverflow.co/2023/#ai

Write a function to sort a list of elements.

def comb_sort(nums):
........
while i + gap < len(nums):

if nums[i] < nums[i + gap]:
nums[i], nums[i + gap] =\

nums[i + gap], nums[i]
sorted = False

i += 1
return nums

User NLP requirement
LLMs

Code Solution

Enhancing
prompts

ClarifyGPT: A Framework for Enhancing LLM-Based Code Generation via Requirements Clarification

F Mu, L Shi, S Wang, Z Yu, B Zhang, CX Wang, S Liu, Q Wang

Proceedings of the ACM on Software Engineering 1 (FSE), 2332-2354

User NLP requirement
LLMs

Generated Code

def comb_sort(nums):
........
while i + gap < len(nums):

if nums[i] < nums[i + gap]:
nums[i], nums[i + gap] =\

nums[i + gap], nums[i]
sorted = False

i += 1
return nums

Challenges for LLM-based Code Generation

➢ Users often struggle to accurately express their requirements, leading to ambiguity
in natural language descriptions

➢ LLMs lack machinimas to clarify the requirements

Write a function to sort a list of elements.

User NLP requirement
LLMs

Generated Code

def comb_sort(nums):
........
while i + gap < len(nums):

if nums[i] < nums[i + gap]:
nums[i], nums[i + gap] =\

nums[i + gap], nums[i]
sorted = False

i += 1
return nums

ambiguity: asc or desc？

sorting desc

Challenges for LLM-based Code Generation

➢ Users often struggle to accurately express their requirements, leading to ambiguity
in natural language descriptions

➢ LLMs lack machinimas to clarify the requirements

Write a function to sort a list of elements.

User NLP requirement
LLMs

Generated Code

def comb_sort(nums):
........
while i + gap < len(nums):

if nums[i] < nums[i + gap]:
nums[i], nums[i + gap] =\

nums[i + gap], nums[i]
sorted = False

i += 1
return nums

ambiguity: asc or desc？

sorting asc

Challenges for LLM-based Code Generation

➢ Users often struggle to accurately express their requirements, leading to ambiguity
in natural language descriptions

➢ LLMs lack machinimas to clarify the requirements

Write a function to sort a list of elements.

Generated Code

Observation: Ambiguous requirements often lead to semantic
inconsistent code among different solutions generated by LLMs.

User NLP requirement
LLMs

Generated Code

def comb_sort(nums):
........
while i + gap < len(nums):

if nums[i] < nums[i + gap]:
nums[i], nums[i + gap] =\

nums[i + gap], nums[i]
sorted = False

i += 1
return nums

ambiguity: asc or desc？

sorting asc

Challenges for LLM-based Code Generation

➢ Users often struggle to accurately express their requirements, leading to ambiguity
in natural language descriptions

➢ LLMs lack machinimas to clarify the requirements

Write a function to sort a list of elements.

Solution: Human-in-the-loop Requirements Clarification

Write a function to sort a list of elements.
def comb_sort(nums):

........
while i + gap < len(nums):

if nums[i] > nums[i + gap]:
nums[i], nums[i + gap] =nums[i + gap], nums[i]

........
return nums

User

1 1

LLMs

Generated Code

sorting desc? asc?

Solution: Human-in-the-loop Requirements Clarification

Write a function to sort a list of elements.
def comb_sort(nums):

........
while i + gap < len(nums):

if nums[i] > nums[i + gap]:
nums[i], nums[i + gap] =nums[i + gap], nums[i]

........
return nums

User

Should the sorting be in ascending or
descending order?

2

1 1

2

LLMs

Generated Code

sorting desc? asc?

Solution: Human-in-the-loop Requirements Clarification

Write a function to sort a list of elements.
def comb_sort(nums):

........
while i + gap < len(nums):

if nums[i] < nums[i + gap]:
nums[i], nums[i + gap] =nums[i + gap], nums[i]

........
return nums

User

Should the sorting be in ascending or
descending order?

Ascending order

2

1

3

1

2

3 LLMs

Generated Code

sorting asc

Write a function to sort a list of elements.
def comb_sort(nums):

........
while i + gap < len(nums):

if nums[i] > nums[i + gap]:
nums[i], nums[i + gap] =nums[i + gap], nums[i]

........
return nums

User

Should the sorting be in ascending or
descending order?

Ascending order

2

1

3

1

2

3 LLMs

Generated Code

sorting asc

Goal: Empowering LLMs with the ability to identify and clarify ambiguous
requirements would help LLMs generate accurate code.

Solution: Human-in-the-loop Requirements Clarification

Empowering LLM-based Code Generation with Intention
Clarification

Overview of ClarifyGPT

Empowering LLM-based Code Generation with Intention
Clarification

• Challenge1: When to ask clarifying
questions？

➢ Test Input Generation: Generate
a large number of tests via
mutation based on the reqs

➢ Code Consistency Check: Run the
generated code on the test inputs.
If the test outputs are consistent,
we consider the requirements are
unambiguous

Overview of ClarifyGPT

Empowering LLM-based Code Generation with Intention
Clarification

• Challenge1: When to ask clarifying
questions？

➢ Test Input Generation: Generate
a large number of tests via
mutation based on the reqs

➢ Code Consistency Check: Run the
generated code on the test inputs.
If the test outputs are consistent,
we consider the requirements are
unambiguous

• Challenge2: What questions？

➢ Reasoning-based Question
Generation: Use LLMs to analyze
the reasons for ambiguity and
propose targeted questions based
on the identified causes.

Overview of ClarifyGPT

Empowering LLM-based Code Generation with Intention
Clarification

• Challenge1: When to ask clarifying
questions？

➢ Test Input Generation: Generate
a large number of tests via
mutation based on the reqs

➢ Code Consistency Check: Run the
generated code on the test inputs.
If the test outputs are consistent,
we consider the requirements are
unambiguous

• Challenge2: What questions？

➢ Reasoning-based Question
Generation: Use LLMs to analyze
the reasons for ambiguity and
propose targeted questions based
on the identified causes.

Overview of ClarifyGPT

ClarifyGPT improves the performance of LLM-based code
generation by around 15%

The Pass@1(%) of ClarifyGPT
• Participants:

➢ students, researchers, and developers
➢ >3 years of experience with Python

• Two baselines:
➢ Chain-of-thought
➢ GPT-Engineering

• Datasets:
➢ MBPP-sanitized/ET (427)
➢ HumanEval (164)

ClarifyGPT elevates the performance (Pass@1) of GPT-4 on MBPP-sanitized from 70.96% to
80.8%; and elevates its performance on MBPP-ET from 51.52% to 60.19%. The relative
improvement is 15.35% on average, outperforming the baselines.

ClarifyGPT with Simulated User Feedback

ClarifyGPT vs. GPT-Engineering

➢ Pitfalls of GPT-Engineering:
➢ ask questions for every problem (on average 3 more than ClarifyGPT)
➢ ask unnecessary questions

EPiC: Search-based Prompt Optimization for LLM-based
Code Generation

Enhancing
prompts

• Prompt Optimization
➢ Utilize search algorithms to explore variations of

prompts to identify those that yield the best responses

➢ Better alignment with LLMs’ training data, and stimulate
better response with certain structures/words/phrases

https://arxiv.org/pdf/2408.11198

EPiC: Cost-effective Search-based Prompt Engineering of LLMs for Code Generation

H Taherkhani, M Sepindband, HV Pham, S Wang, H Hemmati

https://arxiv.org/pdf/2408.11198

EPiC: Search-based Prompt Optimization for LLM-based
Code Generation

Enhancing
prompts

➢ Utilize search algorithms to explore variations of
prompts to identify those that yield the best responses

➢ Better alignment with LLMs’ training data, and stimulate
better response with certain structures/words/phrases

• Prompt Optimization

Write a function to sort a list of elements upwardly.

def comb_sort(nums):
........
while i + gap < len(nums):

if nums[i] > nums[i + gap]:
nums[i], nums[i + gap] =nums[i + gap],

nums[i]

User LLMs
Write a function to sort a list of elements ascendingly.

def bubble_sort(nums):
........
while i –gap < len(nums)-1:

if nums[i-gap] < nums[i]:
nums[i], nums[i + gap] =nums[i + gap],

nums[i]

1. Generate initial tests and solution

2. Evaluate the generated code

3. Build initial population with LLM

4. Evaluate each prompt and calculate the fitness score

5. Select the candidate prompts for mutation

6. Mutate prompts and re-generating solutions

• fitness function
➢ pass rate of tests

• mutation approaches
➢ LLM-based
➢ similar_words_replace

• population
➢ N * 10

Overview of EPiC

EPiC outperforms SOTA in pass@1, $cost, and time

• Three baselines:
➢ Reflexion (verbal feedback +RL)
➢ LDB (feedback + COT)
➢ LATS (agent + search)

• Tow datasets:
➢ HumanEval
➢ MBPP

EPiC outperforms the SOTA baselines by %1 to %3 on HumanEval
and %2 to %7 on MBPP with costs that are either lower or
comparable to prior studies.

The Impact of Different Knowledge Base Sources on
RAG-based Unit Test Generation

Enhancing
prompts

➢ Allows LLMs access to the latest and more domain-specific
information

➢ Helps ground the output in factual information, reducing the
likelihood of hallucinations

• Retrieval-Augmented Generation (RAG)

https://arxiv.org/abs/2310.10508

Prompt Engineering or Fine Tuning: An Empirical Assessment of Large Language Models in Automated Software Engineering Tasks

J Shin, C Tang, T Mohati, M Nayebi, S Wang, H Hemmati

The Impact of Different Knowledge Base Sources on
RAG-based Unit Test Generation

Enhancing
prompts

➢ Allows LLMs access to the latest and more domain-specific
information

➢ Helps ground the output in factual information, reducing the
likelihood of hallucinations

• Retrieval-Augmented Generation (RAG)

• External Sources for RAG-based test generation:

Code Repo Q&A Knowledge Documents

…..

Impact of different external resources of RAG-based test
generation

Impact of different external resources of RAG-based test
generation

• Four baselines:
➢ GPT-3.5-turbo
➢ GPT-4o
➢ Mistral 8x22B instruct
➢ Llama 3.1 405B instruct

• Five DL infrastructure libs:
➢ TensorFlow
➢ PyTorch
➢ Sk-learn
➢ Google Jax

➢ XGBoost
• Four metrics:

➢ Parse rate
➢ Execution rate
➢ Pass rate
➢ Code Coverage

• Two RAGs:
➢ Basic
➢ API

Win counts (based on code coverage) of the RAG approaches vs the zero-shots (ZS). Cmb
denotes combined RAG, API denotes API documents, GH denotes GitHub issues, and SO
denotes StackOverflow Q&As.

Performance of RAGs with different settings

1. RAG could improve the code coverage not the syntactical correctness of unit test cases.
2. API-level RAG generally performs better than Basic (project-level) RAG.
3. GitHub issues benefit RAG the most among the three examined sources.

Benefits of GitHub issues for RAGs: covering more corner cases

• Structured and Context-Rich
Information:
➢ logs, stack traces, code snippets

• Detailed Problem Context:
➢ exact inputs used and the method

calls that led to the problem

GitHub issues provide unique knowledge

Domain Adaptation for Code Model-based Unit Test
Case Generation

Fine-tuning
LLMs

▪ Domain shift:
occurs when a machine learning model is
trained on data from one domain but is later
applied to data from a different domain,
leading to a drop in performance.

▪ Fine-tuning:
Involves continuing training with
datasets from a specific task and
adjusting the model weights.

▪ Domain Adaptation
Fine-grained fine-tuning with
datasets from a specific domain or
project.

Domain Adaptation for Code Model-Based Unit Test Case Generation

J Shin, S Hashtroudi, H Hemmati, S Wang

ISSTA 2024

Our Approach: Fine-tuning + Domain adaptation

1. Test Mapping
➢ Which lines are covered by which tests

2. Fine-tune on “task-level”
➢ Methods2Test data (780K)

3. DA on “project-level”
➢ Defects4J (20% code from projects)

4. Post-processing
➢ AST parsability check

➢ Remove existing tests

➢ Inject unit tests

• Two baselines:
➢ GPT-4
➢ A3Test (PLBart)

• Five metrics:
➢ Parse rate
➢ Execution rate
➢ BLEU/CodeBLEU
➢ Line Coverage
➢ Mutation Score

• Base model:
➢ CodeT5 (220M parameters)

CodeT5 with and without DA vs. GPT-4 and A3Test

• A Groundbreaking evaluation framework designed to assess the
capabilities of LLMs in resolving GitHub Issues.

• Address the limitations of traditional benchmarks that are synthetic
or simplified (they are complex and real).

• They include issues with test cases expecting the LLMs to pass
them.

SWE-Bench+: Enhanced Coding Benchmark for
LLMs

Benchmark
Reliability

arXiv preprint arXiv:2410.06992

SWE-Bench+: Enhanced Coding Benchmark for LLMs

R Aleithan, H Xue, MM Mohajer, E Nnorom, G Uddin, S Wang

Robustness Analysis of SWE-Bench

are the LLMs actually resolving the issues in the SWE-bench?

Overview of our manual analysis

• Model:
➢ SWE-Agent + GPT4

• Data:
➢ 2k raw issues (titles, tests, gold patches)
➢ 251 successfully fixed issues

➢ generated patches
➢ tests

• Patch Validation Study:
➢ each patch v.s gold patch
➢ review logs, issue descriptions, tests

64% of the solved issues are suspicious

64% of the solved issues are suspicious

LLMs’ performance on clean data drops by 90%

From Prompt Enhancement to Fine-Tuning:
Improving Automatic SE Tasks with LLMs

From Prompt Enhancement to Fine-Tuning:
Improving Automatic SE Tasks with LLMs

From Prompt Enhancement to Fine-Tuning:
Improving Automatic SE Tasks with LLMs

From Prompt Enhancement to Fine-Tuning:
Improving Automatic SE Tasks with LLMs

From Prompt Enhancement to Fine-Tuning:
Improving Automatic SE Tasks with LLMs

From Prompt Enhancement to Fine-Tuning:
Improving Automatic SE Tasks with LLMs

https://www.eecs.yorku.ca/~wangsong/
wangsong@yorku.ca

We are hiring (10 faculty positions):
https://lassonde.yorku.ca/about/careers/faculty-recruitment

