
Development Platforms
for Agentic Software

Gustavo Oliva

www.gaoliva.com

How to cite this session?

@misc{Oliva2024AIwareTutorial,

author = {Gustavo Oliva},

title = {Development Platforms for Agentic Software},

howpublished = {Tutorial presented at the AIware Leadership Bootcamp 2024},

month = {November},

year = {2024},

address = {Toronto, Canada},

note = {Part of the AIware Leadership Bootcamp series.},

url = {https://aiwarebootcamp.io/slides/2024_aiwarebootcamp_oliva_development_platforms_for_agentic_software.pdf}}

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

❑ Introduction (5min)

❑ Deep dive into Microsoft AutoGen with examples (50min)

❑ Creating an AutoGen playground for experimentation (10min)

❑ Other agentic development platforms (5 min)

❑ Standardization efforts for FM-powered Agents (5 min)

❑ Beyond this presentation (1 min)

Overview of the session

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Overview of the session

❑ Introduction

❑ Deep dive into Microsoft AutoGen with examples

❑ Creating an AutoGen playground for experimentation

❑ Other agentic development platforms

❑ Standardization efforts for FM-powered Agents

❑ Beyond this presentation

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Introduction
• The idea of multi-agent systems have been around for a

while (e.g., agents in Reinforcement Learning)

• Multi-agent systems are typically designed around
autonomous agents that interact with each other to
achieve a broader goal (e.g., fix a software bug)

• Suitable architecture for complex problems that require
decomposition (each agent focuses on solving one part
of the problem)

• With the advent of foundation models (particularly smarter
LLMs), the community quickly saw the potential of creating
FM-powered agents and FM-powered multi-agent systems.

• Shortly after, the need for flexible multi-agent frameworks
and platforms emerged…

[…] AGI will take the form
factor of some kind of an AI
agent. And it's not just going
to be a single agent. [1]

Andrej Karpathy (former director of AI and
Autopilot Vision at Tesla. Now with OpenAI)

[1] https://www.youtube.com/watch?v=aGV3aycnwhA Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

https://www.youtube.com/watch?v=aGV3aycnwhA

The need for multi-agent frameworks

[1] Qingyun Wu et al. AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation. arXiv:2308.08155, 2023.
[2] BabyAGI. Github — babyagi. https://github.com/yoheinakajima/babyagi, 2023
[3] Hong et al. Metagpt: Meta programming for multi-agent collaborative framework. arXiv:2308.00352, 2023.

• AutoGen [1] from Microsoft became one of
the most popular multi-agent frameworks in
late 2023

• Multi-agent systems from that time (e.g.,
BabyAGI [1], MetaGPT [2]) served as
inspiration to define the key set of features in
AutoGen

• A reusable framework

• Flexible agent conversation patterns

• Code execution capability

• Human-in-the-loop

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Cognitive architecture as the key value of an agentic system

• FMs have become more powerful over time and will continue to improve
(e.g., reasoning capabilities with o1)

• These models are available to everyone building multi-agent systems

• The key value (IP) of an agentic system thus lies in its cognitive
architecture and not exactly in the models themselves

• How many agents should my system have?

• What roles should they play?

• What model should each agent use?

• How should agents communicate?

• How much human intervention should be prescribed?

• How to best manage (the different types of) memory?

• And those are fundamentally an SE problem! (an open problem btw)

AI

SE
Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Overview of the session

❑ Introduction

❑ Deep dive into Microsoft AutoGen with examples

❑ Creating an AutoGen playground for experimentation

❑ Other agentic development platforms

❑ Standardization efforts for FM-powered Agents

❑ Beyond this presentation

Deep dive based on Microsoft’s AutoGen tutorial https://microsoft.github.io/autogen/0.2/docs/tutorial Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

pip install autogen-agentchat~=0.2
Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Key Concepts

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Agents

• An entity that can send and receive messages to and from other agents in its environment

• ConversableAgent is a built-in agent that supports the following components (which can be turned on and
off):

• A list of LLMs

• A code executor

• A function/tool executor

• A component for keeping human-in-the-loop

• LLMs, for example, enable agents to converse in natural languages and transform between structured and
unstructured text

• The generate_reply method takes a question and generates a reply

Key concepts

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

ConversableAgent

generate_reply

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Personas and Conversations

• It is common for agents to embody a persona

• A persona is typically assigned to an agent using a system prompt

• A system prompt is defined with the system_message during ConversableAgent instantiation

• Agents participate in conversations or chat with each other

• A conversation is a sequence of messages exchanged between agents

• Conversations are employed to make progress on a task

• A conversation is started using the agent.initiate_chat(recipient, message, max_turns, …) method

• recipient is the agent receiving the message

• message is the message being sent

• max_turns indicates the number of conversation round trips

Key concepts

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Let us have two agents put on a comedy show!

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

First turn

Second turn

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Terminating
Conversations

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

• An any complex, autonomous workflows it’s crucial to know when/how to stop the workflow

• Task is completed

• Process has consumed predetermined resources

• Two options

• As a conversation parameter (parameter to initiate_chat)

• max_turns: As we saw, this determines the number of conversation round trips

• As an agent parameter (parameter to ConversableAgent)

• max_consecutive_auto_reply: Triggers termination if the number of automatic responses to the
same sender exceeds a threshold

• is_termination_msg: Triggers termination if the received message satisfies a particular condition.
More specifically, it is a function that takes a message in the form of a dictionary and returns a
boolean value indicating if this received message is a termination message.

• If NONE (default) is provided, is_termination_msg is internally set to “TERMINATE”

• That is, by default, this agent stops responding once it receives a “TERMINATE” message

Terminating Conversations (w/o human-in-the-loop)

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Using
max_consecutive_auto_reply

Note how Joe
replies only

one to Cathy

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Using is_termination_msg

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Another example: Guess the number game

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Human-in-the-loop

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Human-in-the-loop

• Many applications require human feedback to steer
agents in the right direction, specify goals, or
terminate conversations.

• AutoGen offers this capability via Human input
modes

Human input modes

• NEVER: human input is never requested. Meant for fully autonomous agents.

• ALWAYS: human input is always requested (max_consecutive_auto_reply is ignored) and the human can
choose to either

• Do nothing and trigger an auto-reply (i.e., the agent replies)

• Reply to the message

• Terminate the conversation (by typing exit)

• TERMINATE (default): human input is only requested when a termination condition is met. If the human
chooses to reply, the conversation continues and the counter used by max_consecutive_auto_reply is reset.

Human-in-the-loop

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

human_input_mode = ALWAYS

• No LLM used for human_proxy, so this is a human <-> agent conversation

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Human is prompted
to enter a response

each time

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

human_input_mode = TERMINATE

• Human input is requested
when a termination
condition is triggered, so
need to pay attention to
those conditions.

• If the human chooses to
reply, the agent’s reply
(auto reply) counter is
reset

• If the human chooses to
skip, the agent replies
and the agent’s reply
(auto reply) counter is
incremented.

• If the human chooses to
terminate, the
conversation ends

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Human answers

Human answers

Human answers
Oliva, AIware
Leadership
Bootcamp,
Toronto,
Canada, 2024

Code Executors

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

• A code executor is a component that takes input messages containing code blocks, performs code execution,
and outputs messages with the results

• Two types of code executors

• Command Line: runs on a shell, each code block is executed in a new process (stateless)

• Jupyter Kernel: runs on a stateful jupyter kernel (e.g., you can define one variable in a code block and
use it in another block)

• Each code executor can run either locally or on a Docker container

Code Executors

Local
setup

Docker
setup

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Command Line Executor
with a Local Setup

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Same
as

before

A more interesting example…

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Is the conversation over?
Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

It actually takes a few more turns for the conversation to end…

code_executor_agent should define an explicit termination function (e.g., last word in received message is “TERMINATE”)

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Command Line Executor
with a Docker Setup

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Tool Use

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

What are tools?

• Tools are pre-defined functions that agents can use

• Searching the web, performing calculations, reading files, or calling remote APIs

• Tools provide more control over the agent’s actions (including code generation)

• Tool use is currently only available for LLMs that support OpenAI-compatible tool call API.

How to create tools?

• Tools can be created as regular Python functions

• Make sure to use type hints for arguments and return value of functions

• Also supports pydantic (for more complex schema definitions)

Registering tools

• A tool must be registered with two agents for it to be useful in a conversation.

• The agent registered with the tool’s signature through register_for_llm can create a tool call

• The agent registered with the tool’s function object through register_for_execution can execute the call.

• Tool usage and code execution can be “hidden” within a single agent via nested chats

Tool Use

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Let’s create an agent that can call a calculator
First let’s define the python function…

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Registering
the tool…
(no change in
how an agent

is instantiated)

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

The tool’s schema is auto-generated by AutoGen
from the function’s typehints…

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Conversation
Patterns

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Overview
• Two-agent chat: the simplest form of conversation pattern where two agents chat with

each other.

• Sequential chat: a sequence of chats between two agents, chained together by a carryover
mechanism, which brings the summary of the previous chat to the context of the next
chat.

• Group Chat: a single chat involving more than two agents.

• Several strategies can be used to define the next speaker (agent): round_robin,
random, manual (human selection), and auto (Default, using an LLM to decide).

• Selection of the next speaker can be constrained using allowed and disallowed speaker
transitions

• Selection of the next speaker can be done with a user-defined function (e.g., allowing a
deterministic workflow among agents)

• Nested Chat: package a workflow into a single agent for reuse in a larger workflows.

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Two-Agent Chat

• Takes a list of messages from the conversation and
summarizes them using a call to an LLM (recipient’s LLM).

• Prompt: “Summarize the takeaway from the conversation.
Do not add any introductory phrases.” (can be customized)

Contains:
• Conversation history
• Human input
• Token cost
• ….

Chat parameters Oliva, AIware
Leadership
Bootcamp,
Toronto,
Canada, 2024

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Sequential Chats
This pattern is useful for complex task that can be broken down into interdependent sub-tasks
• Carryover (conversation summary) accumulates as the conversation moves forward, so

each subsequent chat starts with all the carryovers from previous chats.

Chat parametersChat parameters Chat parameters Chat parameters

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Example: arithmetic operations
with agents

The Number Agent always
returns the same numbers.

The Adder Agent adds 1 to each
number it receives.

The Multiplier Agent multiplies
each number it receives by 2.

The Subtracter Agent subtracts 1
from each number it receives.

The Divider Agent divides each
number it receives by 2.

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Group Chats
• All agents contribute to a single

conversation thread (chat)

• Agents share the same context

• A GroupChatManager decides who will
speak next using one of these strategies:

• round_robin

• random

• manual (human selection)

• auto (default, LLM decides).

• The selection of the next speaker can be
constrained

• The selection of the next speaker can be
customized with a Python function

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Basic recipe for group chat (using ‘auto’)
1) Describe the Agents

• To help the GroupChatManager select the next agent, we add a description to the agents that
will engage in the group chat.

• If a description is not provided, the GroupChatManager will use the agents’ system_message
(system prompt) to decide the order, which might not be the best choice.

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Basic recipe for group chat (using ‘auto’)
2) Instantiate a GroupChat
• Defines the basic parameters of the chat
• The agents list defines the list of agents who will chat

• If round_robin is used, the list order is respected
• The speaker_selection_method determines the method for selecting the next speaker (omitted

below, defaults to auto)
• The messages list acts as the starting history or context for the conversation among the agents.

• It helps establish any predefined interactions, setup information, or introductory dialogue that
the agents can reference during the chat. (empty in this example)

• The max_rounds parameter defines the number of chat rounds (“Select speaker -> agent speaks ->
message is broadcasted”).

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Basic recipe for group chat (using ‘auto’)
3) Instantiate a GroupChatManager
• A GroupChatManager takes a GroupChat as input (i.e., the group chat that it will manage)
• The auto mode uses an LLM to select the next speaker based on their descriptions, so we need

to specify an LLM for this agent

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Basic recipe for group chat (using ‘auto’)
4) Initiate the chat
• We initiate the chat as usual in a two-agent style
• In this example, one of the agents in the group (number agent) sends a message to the group

chat manager
• The group chat manager will then run the group chat internally and terminate the two-agent

chat when the internal group chat is done.
• Since the number_agent is selected to speak by us, it counts as the first round of the group

chat.

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

In practice, it is as if
a team member is

asking a question the
whole team

(and a moderator
coordinates the
conversation)!

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Tailoring Group Chats: Sending Introductions

• The description field of agents helps the GroupChatManager select the next agent
• Does not help the participating agents to know about each other

• If send_introductions is set to True, the agents will introduce themselves to other agents in the
same chat
• Under the hood, the GroupChatManager sends a message containing the agents’ names

and descriptions to all agents in the group chat before the group chat starts.

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Tailoring Group Chats: Constraining Speaker Selection

• Group chat is a powerful conversation pattern, but it can be hard to control if
the number of participating agents is large.

• AutoGen provides a way to constrain the selection of the next speaker by using
the allowed_or_disallowed_speaker_transitions and speaker_transition_type
argument of the GroupChat class.

• Let us see an example…

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Group Chats as part of Sequential Chats

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

…

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Nested Chats
• Encapsulates a complex chat into an atomic unit

(think of it as a subworkflow node)
• Exposes a single conversational interface

• Often needed for scenarios like question-
answering bots and personal assistants

Mechanism:
• After passing the human-in-the-loop component,

the nested chats handler checks if the message
should trigger a nested chat based on conditions
specified by the user.

• If the conditions are met, the nested chats handler
starts a sequence of nested chats specified using the
sequential chats pattern.

• In each of the nested chats, the sender agent is
always the same agent that triggered the nested
chats.

• In the end, the nested chat handler uses the results
of the nested chats to produce a response to the
original message.

• By default, the nested chat handler uses the
summary of the last chat as the response.

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Step 1. Define the Agents

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Step 2. Define the
nested chats

Step 3. Register the
nested chats

Step 4. Ask the
question (mimicking
a human)

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Agent Memory
with Mem0

https://docs.mem0.ai/integrations/autogen#autogen Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

• Mem0 leverages a hybrid database approach to manage and retrieve long-term memories for AI agents and
assistants.

• Each memory is associated with a unique identifier, such as user_id/agent_id/session_id, allowing Mem0 to
organize and access memories specific to an individual or context.

Adding memories

• When a message is added to the Mem0 using add() method, the system extracts relevant facts and preferences
and stores it across data stores: a vector database, a key-value database, and a graph database.

• This hybrid approach ensures that different types of information are stored in the most efficient manner,
making subsequent searches quick and effective.

Recalling memories

• When an AI agent or LLM needs to recall memories, it uses the search() method.

• Mem0 then performs search across these data stores, retrieving relevant information from each source.

• This information is then passed through a scoring layer, which evaluates their importance based on relevance,
importance, and recency. This ensures that only the most personalized and useful context is surfaced.

• The retrieved memories can then be appended to the LLM’s prompt as needed, making responses personalized
and relevant.

Mem0: How does it work?

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

❑ Introduction (5min)

❑ Deep dive into Microsoft AutoGen with examples

❑ Creating an AutoGen playground for experimentation

❑ Other agentic development platforms

❑ Standardization efforts for FM-powered Agents (5 min)

❑ Beyond this presentation (1 min)

Overview of the session

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Ollama

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

• Ollama: Local AI Model Hub

• Ollama is a platform for discovering, running, and managing FMs (typically LLMs)
directly on personal devices. It ensures privacy by operating offline and enables AI
model use without internet connectivity.

• Efficient Resource Utilization

• Ollama intelligently selects between CPU and GPU based on hardware availability,
model size, and user configurations.

• If a compatible GPU is available, Ollama defaults to it; otherwise, it uses the CPU.

• For large models, it may split processing between GPU and CPU to optimize
performance.

• Accessible and Flexible

• With a user-friendly interface across operating systems, Ollama allows both developers
and non-developers to experiment with powerful AI tools seamlessly on local
machines.

Ollama in a Nutshell

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Also works
in WSL2! ☺

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Watch out for model hash/ID!

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

AutoGen + Ollama

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

AutoGen
Studio

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

❑ Introduction

❑ Deep dive into Microsoft AutoGen with examples

❑ Creating an AutoGen playground for experimentation

❑ Other agentic development platforms

❑ Standardization efforts for FM-powered Agents

❑ Beyond this presentation

Overview of the session

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

https://www.crewai.com/
Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

Oliva, AIware
Leadership
Bootcamp,
Toronto, Canada,
2024

https://github.com/openai/swarm Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

https://www.langchain.com/langgraph

LangGraph

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

AutoGen CrewAI Open AI Swarm Langgraph

Popularity 32.4k stars 20.5k stars 15k stars 6.4k stars

Primary Use Case
Autonomous multi-

agent systems

Task automation and
workforce

optimization

Collaborative agent
orchestration

Dynamic
conversational agents

Platform Focus
Autonomous agent

interaction
Workforce task

allocation
Swarm intelligence
and collaboration

NLP model
interactions and flows

Collaboration Model
Multi-agent

autonomous synergy
Task assignment

(human-AI blend)
Swarm-based,

collaborative agents
Node-based, agent-

to-agent flows

Customization Level
Moderate; code-based

custom workflows
Moderate; predefined

workflows
High; modular swarm

architecture
High; tailored

conversation flows

Deployment
Cloud and edge

deployment options
Cloud and on-premise Cloud-native only Cloud-based

User Interface
Comprehensive UI for

agent workflows
Dashboard-focused

for task management

Modular,
customizable
dashboards

Visual, node-based
graphing interface

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

❑ Introduction

❑ Deep dive into Microsoft AutoGen with examples

❑ Creating an AutoGen playground for experimentation

❑ Other agentic development platforms

❑ Standardization efforts for FM-powered Agents

❑ Beyond this presentation

Overview of the session

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

• Developers are building agents in their own
way (ad-hoc) or using different frameworks

• The lack of a common/unified interface for
agents creates several problems:

• Hard to compare (e.g., benchmark) agents

• Hard to reuse agents

• Hard to develop tools that would work
with any agent out-of-the-box

• Due to the increased adoption of agentic
cognitive architectures, agent interoperability
will become a key challenge

A standard is needed to enable interoperability

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

• Goal: Develop a unified protocol/interface that is as simple as possible

• The Agent Protocol is an API specification (OpenAPI specification v3) and thus technology agnostic

• List of endpoints that the agent should expose with predefined response schema

• The three base objects of the protocol are Task, Step, and Artifact

• A Task denotes one specific goal for the agent, which can be very specific or very broad

• A Step is a single action that the agent should perform. Each step is triggered by calling the
step endpoint of the agent.

• An Artifact is a file that the agent has worked with.

• The protocol has two main endpoints:

• /ap/v1/agent/tasks [POST] - This endpoint is used to create a new task for the agent.

• /ap/v1/agent/tasks/{task_id}/steps [POST] - This endpoint is used to trigger next step of
the task.

Agent Protocol by AI Engineer Foundation

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

❑ Introduction

❑ Deep dive into Microsoft AutoGen with examples

❑ Creating an AutoGen playground for experimentation

❑ Other agentic development platforms

❑ Standardization efforts for FM-powered Agents

❑ Beyond this presentation

Overview of the session

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

• Productionizing Agentic FMware is really hard

• Make sure you check Ahmed/Gopi’s talk about the challenges of productionizing AIware

• AgentOps and (Semantic) Observability are crucial!

• Make sure you check Ben’s presentation about AIware Observability on Day 6 (11:00-11:45am)

• About Tools…

• Check out other memory frameworks (e.g., Zep)

• AutoGen 0.4 experimental will be released soon and has a nicer API

• Several cool videos and courses on Youtube / Coursera

• FMArts hands-on

• Autonomous Software Engineers is an interesting use case

• Agentless (why agents?)

• Aide (agents everywhere!)

• SWE-bench

Where to go from here?

Oliva, AIware Leadership Bootcamp, Toronto, Canada, 2024

