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Assistant augments our capacity

285 Nm, 500 Wh



Next Generation Refactoring: LLM 
Insights and IDE for ExtractMethod
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Long Methods In Codebases
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Extract Method Refactoring

1. Original Method

2. Extracted Method

3. Call Site
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Semi-automated process

No automatic recommendations

Current Extract Method Workflow in IntelliJ

JetBrains’ IntelliJ IDEA has extract 
method capabilities

6



Extract Method Research

Many research tools for recommending fragments to extract
- JDeodorant
- JExtract
- LiveREF
- REMS
- GEMS
- SEMI
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? Optimize software quality metrics

Generate refactorings that do not align with developers’ preferences



Large Language Models (LLMs) + Refactoring

Corpus of 2,849 real-life methods:

LLMs are creative and prolific: 12,387 Extract Method suggestions 
(averaging 4 suggestions per method)

45.7% of the suggestions may be invalid, potentially resulting in non-
compiling code

16.6% of suggestions are not useful (e.g. 
one liners, or entire method body)
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Key Idea: LLMs for 
recommendation 
+ IDE for safe execution



Our solution: EM-Assist
IntelliJ IDEA plugin implementation

Leverage creative capabilities of LLMs

Use static analysis techniques to filter, further enhance, an rank LLM-provided 
suggestions

Utilize the full power of a state-of-the-practice commercial IDE, IntelliJ IDEA, to 
apply refactorings safely
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EM-Assist Evaluation Results

Oracle of actual 1,752 extract method refactorings from OSS
● EM-Assist achieved 53% recall rate
● Compared to

○ 39% recall rate by JExtract (best in class using static analysis)
○ 5% recall rate by LiveREF

18 developers participated in usability survey, 94% gave a positive rating:

”Thank you for interesting suggestions! Hope to see this in production.”

”These suggestions made me look at this code with new eyes, and I will refactor it.”
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LLM-Powered Move 
Method Assistant



Move Method Refactoring

https://refactoring.guru/smells/feature-envy

Solution to feature envy!



Challenges for Move Method

Challenges:
• - determine which method is out of place
• - find a suitable Target class

• Global project understanding

LLM + Vector embeddings + IDE



Demo



Workflow



Results

Corpus of 208 refactorings performed by OSS 
developers

• Recall 82%
• 4x better than previous best-in-class tools



Unprecedented Code Change Automation: The Fusion
of LLM and Transformation by Example

FSE’24 Research Track

Malinda Dilhara Abhiram Bellur Timofey Bryksin Danny Dig



Code change pattern (CPAT)

number = 0
for x in intArray:

number= number + x
number= numpy.sum(intArray)
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Commit c8b28432 in GitHub project NifTK/NiftyNet



21

Transformation By Example 

Learn coding best practices from open-source repos and transplant 
these into other code
Cannot apply these to new sites unless the code is exactly the same

Use LLM to generate many code variants, we validate 
automatically and apply suggestions to new locations

14x improvements over previous state of the art approach
We contributed to famous open-source projects, they accepted 83% 
of our suggestions



Under the hood: PyCraft
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LLMs are Prolific but with High rate of hallucinations: 
- ExtractMethod: 73% rate of hallucinations

- MoveMethod 80% hallucinations 

- PyCraft: 65% hallucinations

-Unit tests: 35% hallucinations

Do what LLM suggests, not what they do => need for powerful validators

○ remove hallucinations automatically reusing static analysis from the IDE (e.g., refactoring precondition) 

Where else can we reuse the IDE as validator?

○ new static analysis

○ dynamic analysis: generated small unit tests in PyCraft, used original code variant as validator

Lessons Learned
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Precise prompt for higher quality suggestions

○ append line numbers for the code input 

○ ask LLM to give you precise response using line numbers

○ ask LLM to specify the output in structured format (JSON): useful if the output is consumed by other tools

Few-shot learning worked best for both EM-Assist and PyCraft

For MoveMethod-Assist: RAG needed to focus the LLM laser in large projects, along with Chain-of-Thought 

Lessons Learned
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To get consistent high-quality suggestions, you need to reprompt (in the background), accumulate 

results shown to the user

Re-prompting not a waste

Newly-designed ranking to match LLM workflow (e.g., popularity of suggestions, heat map of the 

code affected by suggestions)

Sweet spot: tuning LLM hyperparameters (e.g., temperatures and number of iterations) is essential
• Higher randomness in Large Language Models is preferred when a solid validation framework exists 

Lessons Learned: 
Taming LLM nondeterminism
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Executive Summary

IDE LLM 26+
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