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• Code Completion (DyPyBench) 

✓ Correctness around 30% 

• Buggy/Fixed Code (SStubs4J) 

✓ Correctness 1-27%

Yes, L2R is a difficult setting 
 
(FIM, SAFIM easier)

?!?@#$%!!!

Last Mile can be problematic 
(L2R Completion: CodeGen2-16B, Codex, GPT-3.5)



Another Evaluation: Simple Stupid bugs 
(Sutton & Karampatsis, 2020)

• Single-statement bug fixes from project version 
history ~ 17K examples after cleaning.  

• Collected from about 1000 projects 

• Median  fix-time, about 4 days..but sometimes 
much longer. 

• Widely used dataset, entire conference track 
devoted to it  (MSR 2021)



All	samples	in	dataset	used		
were	fixed	before	

LLM	training	data	was	gathered.
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Methodology
RQ: Does Codex repeat human mistakes?

Using 17K “Simple, Stupid Bugs” (SStuB)

1. Find the SStuB introduction in version history.

2. Use the prefix to the SStuB as prompt, and..

3. Ask LLM to prompt. 

4. Classify resulting completion:  
 
                                 Bug? Patch? Other? 
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How “sticky” are  
Codex-generated bugs?

“Sticky”  Takes Longer to Fix. 🤔🤔⟹

More “Natural” Bugs  Longer to Fix ???⟹

When Codex makes a mistake, did that bug stick around longer?
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Overall Theme
• LLMs: Codex, GPT-x, etc are now widely used to 

generate code and related artifacts.  

•
Is this code any good?  🤨

•
If it’s not always good what happens? 😱
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I’ll use 
Directly

 if Confidence 
Is high

I’ll review 
if Confidence 

is medium

I’ll discard 
if Confidence 

is low

Rational Decions, in Expectation

• Whenever output is generated at high-
confidence, it should be empirically 
correct most often. Otherwise…

• Whenever output is generated at low-
confidence, it should be empircally 
wrong most often. Otherwise…

• Whenever output is generated at 
medium-confidence, it should be 
empirically right  and wrong about 
the same. Otherwise…
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Correctness?
• Exact match with Provided Correct Code

• Correctness modulo testing. (Which 
tests?) 

• “Intrinsic probabilities” from the model 
(average and cumulative)

• … Other measures later

Confidence?
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• LLMs generate text one token at a time, 
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“Intrinsic Probabilities”
• LLMs generate text one token at a time, 

each according to a probability space 
for choices. 

• “Intrinsic” confidence measure for us, is 
just this probability. 

• A sequence is then produced. 

• Take per-token log-probs, and 
summarize (Avg & Product)

Probability	of	a	
token	given	
previous	tokens

!
world
\
“

the

print	(	“	hello	

print	(	“	hello	world!”);	

Summarize!
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• Formalize this?  

• Measuring how close we are to this 
ideal? 
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Calibration is a “constraint” 
On a Conditional Probability. 

p(model’s prediction is correct  | model predicts with “ ” confidence ) =  π π

p(y = ̂y |Pℳ(x, ̂y) = π) = π

y correct output for x

̂y model output for x

Pℳ(x, ̂y) model confidence for input x output ŷ
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Calibration Measures

Bskill =
Bref − Bactual

Bref

Skill scores (between -∞ and 1)

• Unskilled (always base rate)   = 0.0
• Deutsche Wetterdienst 🌞☔    = 0.07
• 538, Nat’l B’ball Assoc            = 0.13
• 538, Congressional Election   = 0.86

Out of the Box, LLM probabilties are negative skill.  



ICSE 2025, to appear
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Datasets

● Function synthesis is 🐁: small, self-contained toy problems 

● DyPyBench dataset consists of thousands of functions with docstrings and running test 
suites in a line completion setting 

● SStubs4J does not have tests, only exact-match
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Models

● Each cell ~ the base rate 
● Thus All Pass @1 Brier Ref Score for DyPyBench, Codex = 0.33*0.67 = 0.22
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GPT 3.5, Line Completion

ECE = 0.15
Brier (actual) = 0.41
Brier (ref) = 0.22
Skill Score = -0.87

Correctness: Test Passing, Confidence: Avg Per-token probability
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Platt Scaling: fit a logistic regression using 
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GPT 3.5, Line Completion 
(Platt rescaling)

ECE = 0.04.                                (was 0.15) 
B (actual) = 0.20.              (was 0.41) 
B (reference) = 0.22 
Skill Score = +0.08.         (was -0.87)
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Beyond Intrinsic Confidence

• Reflective Verbalized Self Ask:  Ask the model, given it’s own 
response, to output a probability of correctness. 

• Reflective True/False Logit: Ask the model if it’s own 
response is correct,  output True/False and take the logistic 
probability of True, normalized with False. 

• Few-shot:  Same as above, except we provide few-shots (both 
RAG and random. 
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TL;DR Findings

• Intrinsic:   Somewhat decent, after rescaling.  

• Verbalized Self Ask:   Not much better. 

• True/False Logit:  Not much better. 

• Few-shot: RAG with BM25 (next slide)
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def Convert2Base7(num): 
   if num < 0: 
     return '-' + Convert2Base7(-num) 
   elif num < 7: 
     return str(num) 
   else: 
     return Convert2Base7(num // 7) + str(num % 7) 

Work underway, please stay tuned.



Summary

• The “Last Mile” is challenging 

• Hypothesis: More information would lead to rational decision 
making and better outcomes.  

• Well Calibrated Confidences are possible 

• Need to do some User Studies. (Collaborators ?)


