
Last Mile
Headaches

(Using LLMs for Code)

(With) Claudio Spiess, David Gros, Toufique Ahmed
Yuvraj Virk, Somesh Jha, Amin Alipour, Michael Pradel, Prem Devanbu

UC Davis (ICSE 2025, to appear)

Prompt!

Prompt!

Prompt!

?!?@#$%!!!

Prompt!

First
Mile

?!?@#$%!!!

Prompt!

First
Mile

“Last”
Mile

?!?@#$%!!!

Prompt!

First
Mile

“Last”
Mile

?!?@#$%!!!

.. and the rest of
the way?

.. and the rest of
the way?

.. and the rest of
the way?

Maintenance costs are heavy!

.. and the rest of
the way?

Maintenance costs are heavy!

..and we don’t know what they are…

?!?@#$%!!!

Last Mile can be problematic
(L2R Completion: CodeGen2-16B, Codex, GPT-3.5)

• Code Completion (DyPyBench)
?!?@#$%!!!

Last Mile can be problematic
(L2R Completion: CodeGen2-16B, Codex, GPT-3.5)

• Code Completion (DyPyBench)

✓ Correctness around 30%

?!?@#$%!!!

Last Mile can be problematic
(L2R Completion: CodeGen2-16B, Codex, GPT-3.5)

• Code Completion (DyPyBench)

✓ Correctness around 30%

• Buggy/Fixed Code (SStubs4J)

?!?@#$%!!!

Last Mile can be problematic
(L2R Completion: CodeGen2-16B, Codex, GPT-3.5)

• Code Completion (DyPyBench)

✓ Correctness around 30%

• Buggy/Fixed Code (SStubs4J)

✓ Correctness 1-27%

?!?@#$%!!!

Last Mile can be problematic
(L2R Completion: CodeGen2-16B, Codex, GPT-3.5)

• Code Completion (DyPyBench)

✓ Correctness around 30%

• Buggy/Fixed Code (SStubs4J)

✓ Correctness 1-27%

Yes, L2R is a difficult setting

(FIM, SAFIM easier)

?!?@#$%!!!

Last Mile can be problematic
(L2R Completion: CodeGen2-16B, Codex, GPT-3.5)

Another Evaluation: Simple Stupid bugs
(Sutton & Karampatsis, 2020)

• Single-statement bug fixes from project version
history ~ 17K examples after cleaning.

• Collected from about 1000 projects

• Median fix-time, about 4 days..but sometimes
much longer.

• Widely used dataset, entire conference track
devoted to it (MSR 2021)

All	samples	in	dataset	used		
were	fixed	before	

LLM	training	data	was	gathered.

Methodology

Methodology
RQ: Does Codex repeat human mistakes?

Methodology
RQ: Does Codex repeat human mistakes?

Using 17K “Simple, Stupid Bugs” (SStuB)

Methodology
RQ: Does Codex repeat human mistakes?

Using 17K “Simple, Stupid Bugs” (SStuB)

1. Find the SStuB introduction in version history.

Methodology
RQ: Does Codex repeat human mistakes?

Using 17K “Simple, Stupid Bugs” (SStuB)

1. Find the SStuB introduction in version history.

2. Use the prefix to the SStuB as prompt, and..

Methodology
RQ: Does Codex repeat human mistakes?

Using 17K “Simple, Stupid Bugs” (SStuB)

1. Find the SStuB introduction in version history.

2. Use the prefix to the SStuB as prompt, and..

3. Ask LLM to prompt.

Methodology
RQ: Does Codex repeat human mistakes?

Using 17K “Simple, Stupid Bugs” (SStuB)

1. Find the SStuB introduction in version history.

2. Use the prefix to the SStuB as prompt, and..

3. Ask LLM to prompt.

4. Classify resulting completion:

 Bug? Patch? Other?

Example

Example

Result

Result

Result
Codex produces fixed code

Result
Codex produces fixed code

Codex produces buggy code TWICE as often

Result
Codex produces fixed code

Codex produces buggy code TWICE as often

Something else

Result Manual Review,
401 samples

Result Manual Review,
401 samples

How “sticky” are
Codex-generated bugs?

How “sticky” are
Codex-generated bugs?

“Sticky” Takes Longer to Fix. 🤔🤔⟹

How “sticky” are
Codex-generated bugs?

“Sticky” Takes Longer to Fix. 🤔🤔⟹

When Codex makes a mistake, did that bug stick around longer?

How “sticky” are
Codex-generated bugs?

“Sticky” Takes Longer to Fix. 🤔🤔⟹

When Codex makes a mistake, did that bug stick around longer?

How “sticky” are
Codex-generated bugs?

“Sticky” Takes Longer to Fix. 🤔🤔⟹

More “Natural” Bugs Longer to Fix ???⟹

When Codex makes a mistake, did that bug stick around longer?

Overall Theme

Overall Theme
• LLMs: Codex, GPT-x, etc are now widely used to

generate code and related artifacts.

Overall Theme
• LLMs: Codex, GPT-x, etc are now widely used to

generate code and related artifacts.

•
Is this code any good? 🤨

Overall Theme
• LLMs: Codex, GPT-x, etc are now widely used to

generate code and related artifacts.

•
Is this code any good? 🤨

•
If it’s not always good what happens? 😱

Potentially
Incorrect

Text

Indication
Of

Confidence
In

Correctness

Potentially
Incorrect

Text

Rational Decision Making

Rational Decision Making

I’ll discard
if Confidence

is low

Rational Decision Making

I’ll use
Directly

 if Confidence
Is high

I’ll discard
if Confidence

is low

Rational Decision Making

I’ll use
Directly

 if Confidence
Is high

I’ll review &edit
if Confidence

is medium

I’ll discard
if Confidence

is low

Rational Decision Making

I’ll use
Directly

 if Confidence
Is high

I’ll review &edit
if Confidence

is medium

I’ll discard
if Confidence

is low

..but for this to work, we need well-calibrated Confidence!!

Rational Decision Making

I’ll use
Directly

 if Confidence
Is high

I’ll review
if Confidence

is medium

I’ll discard
if Confidence

is low

Rational Decions, in Expectation

I’ll use
Directly

 if Confidence
Is high

I’ll review
if Confidence

is medium

I’ll discard
if Confidence

is low

Rational Decions, in Expectation

• Whenever output is generated at high-
confidence, it should be empirically
correct most often. Otherwise…

I’ll use
Directly

 if Confidence
Is high

I’ll review
if Confidence

is medium

I’ll discard
if Confidence

is low

Rational Decions, in Expectation

• Whenever output is generated at high-
confidence, it should be empirically
correct most often. Otherwise…

• Whenever output is generated at low-
confidence, it should be empircally
wrong most often. Otherwise…

I’ll use
Directly

 if Confidence
Is high

I’ll review
if Confidence

is medium

I’ll discard
if Confidence

is low

Rational Decions, in Expectation

• Whenever output is generated at high-
confidence, it should be empirically
correct most often. Otherwise…

• Whenever output is generated at low-
confidence, it should be empircally
wrong most often. Otherwise…

• Whenever output is generated at
medium-confidence, it should be
empirically right and wrong about
the same. Otherwise…

Calibration	of	Predictive	Models

54%Rain	Prediction	
Model

Calibration	of	Predictive	Models

36%
54%

Calibration	of	Predictive	Models

2%

1%
9%

7%

8%

6%

3%

2%

9%

5%
13%

15%

12%

11%
14%

17%
17%

14%

12%

15%

27%

26%

29%

24%

28%

24%

26%

25%

36%

37%

36%

37%

31%

37%

31%

33%

42%

40%

41%

49% 48%

43%

27% 29%

36%

38%

45%

49%

43%

42%

53%

59%

55%

57%

59%

51%

56%

54%

53%

52%

62%

64% 66%

64%

61%

63%

65%

63%69%

64%

71%

77%

73%

71%
72%

79%

75%

73% 72%
73%

83%
86%

83%

83%80%

83%

81%

85%

83%

89% 92%
94%

96%

94%

93%

91%

97%96%

92%

94%

Calibration	of	Predictive	Models
2%

1%

9%

7%

8%

6%

3%

2%

9%

5%

13%

15%

12%

11%

14%

17%

17%

14%

12%

15%

27%

26%

29%

24%

28%

24%

26%

25%

36%

37%

36%

37%

31%

37%

31%

33%

42%

40%

41%

49%

48%

43%

27%

29% 36%

38%

45%

49%

43%

42%

53%

59%

55%

57%

59%

51%

56%

54%

53%

52%

62%

64%

66%

64%

61%

63%

65%

63%

69%

64%

71%

77%

73%

71%

72%

79%

75%

73%

72%

73%

83%

86%

83%

83%

80%

83%

81%

85%

83%

89%

92%

94%

96%

94%

93%

91%

97%

96%

92%

94%

Model	Confidence

Ac
tu
al
	C
or
re
tn
es
s	R

at
e

10 20 30 40 50 60 70 80 90 100

Calibration	of	Predictive	Models
2%

1%

9%

7%

8%

6%

3%

2%

9%

5%

13%

15%

12%

11%

14%

17%

17%

14%

12%

15%

27%

26%

29%

24%

28%

24%

26%

25%

36%

37%

36%

37%

31%

37%

31%

33%

42%

40%

41%

49%

48%

43%

27%

29% 36%

38%

45%

49%

43%

42%

53%

59%

55%

57%

59%

51%

56%

54%

53%

52%

62%

64%

66%

64%

61%

63%

65%

63%

69%

64%

71%

77%

73%

71%

72%

79%

75%

73%

72%

73%

83%

86%

83%

83%

80%

83%

81%

85%

83%

89%

92%

94%

96%

94%

93%

91%

97%

96%

92%

94%

Model	Confidence

Ac
tu
al
	C
or
re
tn
es
s	R

at
e

10 20 30 40 50 60 70 80 90 100

Calibration	of	Predictive	Models
2%

1%

9%

7%

8%

6%

3%

2%

9%

5%

13%

15%

12%

11%

14%

17%

17%

14%

12%

15%

27%

26%

29%

24%

28%

24%

26%

25%

36%

37%

36%

37%

31%

37%

31%

33%

42%

40%

41%

49%

48%

43%

27%

29% 36%

38%

45%

49%

43%

42%

53%

59%

55%

57%

59%

51%

56%

54%

53%

52%

62%

64%

66%

64%

61%

63%

65%

63%

69%

64%

71%

77%

73%

71%

72%

79%

75%

73%

72%

73%

83%

86%

83%

83%

80%

83%

81%

85%

83%

89%

92%

94%

96%

94%

93%

91%

97%

96%

92%

94%

Model	Confidence

Ac
tu
al
	C
or
re
tn
es
s	R

at
e

10 20 30 40 50 60 70 80 90 100

=> Rational Decision Making!

Correctness? Confidence?

Correctness?
• Exact match with Provided Correct Code

Confidence?

Correctness?
• Exact match with Provided Correct Code

• Correctness modulo testing. (Which
tests?)

Confidence?

Correctness?
• Exact match with Provided Correct Code

• Correctness modulo testing. (Which
tests?)

• “Intrinsic probabilities” from the model
(average and cumulative)

Confidence?

Correctness?
• Exact match with Provided Correct Code

• Correctness modulo testing. (Which
tests?)

• “Intrinsic probabilities” from the model
(average and cumulative)

• … Other measures later

Confidence?

“Intrinsic Probabilities”

“Intrinsic Probabilities”
• LLMs generate text one token at a time,

each according to a probability space
for choices.

“Intrinsic Probabilities”
• LLMs generate text one token at a time,

each according to a probability space
for choices.

print	(“	hello	

“Intrinsic Probabilities”
• LLMs generate text one token at a time,

each according to a probability space
for choices.

!
world
\
“

the

print	(“	hello	

“Intrinsic Probabilities”
• LLMs generate text one token at a time,

each according to a probability space
for choices. Probability	of	a	

token	given	
previous	tokens

!
world
\
“

the

print	(“	hello	

“Intrinsic Probabilities”
• LLMs generate text one token at a time,

each according to a probability space
for choices.

• “Intrinsic” confidence measure for us, is
just this probability.

Probability	of	a	
token	given	
previous	tokens

!
world
\
“

the

print	(“	hello	

“Intrinsic Probabilities”
• LLMs generate text one token at a time,

each according to a probability space
for choices.

• “Intrinsic” confidence measure for us, is
just this probability.

• A sequence is then produced.

Probability	of	a	
token	given	
previous	tokens

!
world
\
“

the

print	(“	hello	

“Intrinsic Probabilities”
• LLMs generate text one token at a time,

each according to a probability space
for choices.

• “Intrinsic” confidence measure for us, is
just this probability.

• A sequence is then produced.

Probability	of	a	
token	given	
previous	tokens

!
world
\
“

the

print	(“	hello	

print	(“	hello	world!”);	

“Intrinsic Probabilities”
• LLMs generate text one token at a time,

each according to a probability space
for choices.

• “Intrinsic” confidence measure for us, is
just this probability.

• A sequence is then produced.

• Take per-token log-probs, and
summarize (Avg & Product)

Probability	of	a	
token	given	
previous	tokens

!
world
\
“

the

print	(“	hello	

print	(“	hello	world!”);	

“Intrinsic Probabilities”
• LLMs generate text one token at a time,

each according to a probability space
for choices.

• “Intrinsic” confidence measure for us, is
just this probability.

• A sequence is then produced.

• Take per-token log-probs, and
summarize (Avg & Product)

Probability	of	a	
token	given	
previous	tokens

!
world
\
“

the

print	(“	hello	

print	(“	hello	world!”);	

“Intrinsic Probabilities”
• LLMs generate text one token at a time,

each according to a probability space
for choices.

• “Intrinsic” confidence measure for us, is
just this probability.

• A sequence is then produced.

• Take per-token log-probs, and
summarize (Avg & Product)

Probability	of	a	
token	given	
previous	tokens

!
world
\
“

the

print	(“	hello	

print	(“	hello	world!”);	

Summarize!

Calibration	of	Predictive	Models
2%

1%

9%

7%

8%

6%

3%

2%

9%

5%

13%

15%

12%

11%

14%

17%

17%

14%

12%

15%

27%

26%

29%

24%

28%

24%

26%

25%

36%

37%

36%

37%

31%

37%

31%

33%

42%

40%

41%

49%

48%

43%

27%

29% 36%

38%

45%

49%

43%

42%

53%

59%

55%

57%

59%

51%

56%

54%

53%

52%

62%

64%

66%

64%

61%

63%

65%

63%

69%

64%

71%

77%

73%

71%

72%

79%

75%

73%

72%

73%

83%

86%

83%

83%

80%

83%

81%

85%

83%

89%

92%

94%

96%

94%

93%

91%

97%

96%

92%

94%

Model	Confidence

Ac
tu
al
	C
or
re
tn
es
s	R

at
e

10 20 30 40 50 60 70 80 90 100

Calibration	of	Predictive	Models
2%

1%

9%

7%

8%

6%

3%

2%

9%

5%

13%

15%

12%

11%

14%

17%

17%

14%

12%

15%

27%

26%

29%

24%

28%

24%

26%

25%

36%

37%

36%

37%

31%

37%

31%

33%

42%

40%

41%

49%

48%

43%

27%

29% 36%

38%

45%

49%

43%

42%

53%

59%

55%

57%

59%

51%

56%

54%

53%

52%

62%

64%

66%

64%

61%

63%

65%

63%

69%

64%

71%

77%

73%

71%

72%

79%

75%

73%

72%

73%

83%

86%

83%

83%

80%

83%

81%

85%

83%

89%

92%

94%

96%

94%

93%

91%

97%

96%

92%

94%

Model	Confidence

Ac
tu
al
	C
or
re
tn
es
s	R

at
e

10 20 30 40 50 60 70 80 90 100

• Formalize this?

Calibration	of	Predictive	Models
2%

1%

9%

7%

8%

6%

3%

2%

9%

5%

13%

15%

12%

11%

14%

17%

17%

14%

12%

15%

27%

26%

29%

24%

28%

24%

26%

25%

36%

37%

36%

37%

31%

37%

31%

33%

42%

40%

41%

49%

48%

43%

27%

29% 36%

38%

45%

49%

43%

42%

53%

59%

55%

57%

59%

51%

56%

54%

53%

52%

62%

64%

66%

64%

61%

63%

65%

63%

69%

64%

71%

77%

73%

71%

72%

79%

75%

73%

72%

73%

83%

86%

83%

83%

80%

83%

81%

85%

83%

89%

92%

94%

96%

94%

93%

91%

97%

96%

92%

94%

Model	Confidence

Ac
tu
al
	C
or
re
tn
es
s	R

at
e

10 20 30 40 50 60 70 80 90 100

• Formalize this?

• Measuring how close we are to this
ideal?

Calibration is a “constraint”
On a Conditional Probability.

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

Calibration is a “constraint”
On a Conditional Probability.

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

Calibration is a “constraint”
On a Conditional Probability.

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

Calibration is a “constraint”
On a Conditional Probability.

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

Calibration is a “constraint”
On a Conditional Probability.

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

p(y = ̂y |Pℳ(x, ̂y) = π) = π

Calibration is a “constraint”
On a Conditional Probability.

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

p(y = ̂y |Pℳ(x, ̂y) = π) = π

y correct output for x

̂y model output for x

Pℳ(x, ̂y) model confidence for input x output ŷ

Reliability Diagram:
Confidence vs. Correctness

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

Reliability Diagram:
Confidence vs. Correctness

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

Reliability Diagram:
Confidence vs. Correctness

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

Reliability Diagram:
Confidence vs. Correctness

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

Reliability Diagram:
Confidence vs. Correctness

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

Reliability Diagram:
Confidence vs. Correctness

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

All Predictions
With confidence

Between 0.2 and 0.3

Reliability Diagram:
Confidence vs. Correctness

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

All Predictions
With confidence

Between 0.2 and 0.3

Predictions in this
Range are about 30%

Correct (good!)

Reliability Diagram:
Confidence vs. Correctness

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

All Predictions
With confidence

Between 0.2 and 0.3

Predictions in this
Range are about 30%

Correct (good!)

Under
Confident

Over
Confident

Reliability Diagram:
Confidence vs. Correctness

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

All Predictions
With confidence

Between 0.2 and 0.3

Predictions in this
Range are about 30%

Correct (good!)

Under
Confident

Over
Confident

Reliability Diagram:
Confidence vs. Correctness

p(model’s prediction is correct | model predicts with “ ” confidence) = π π

All Predictions
With confidence

Between 0.2 and 0.3

Predictions in this
Range are about 30%

Correct (good!)

Under
Confident

Over
Confident

Calibration Measures

Calibration Measures
ECE = ∑

all buckets bi

∣ bi ∣
n

* ∣ correct(bi) − confidence(bi) ∣

Calibration Measures
ECE = ∑

all buckets bi

∣ bi ∣
n

* ∣ correct(bi) − confidence(bi) ∣

Can “CHEAT”: low ECE by always giving base-rate as Confidence

Calibration Measures
ECE = ∑

all buckets bi

∣ bi ∣
n

* ∣ correct(bi) − confidence(bi) ∣

Can “CHEAT”: low ECE by always giving base-rate as Confidence

p(
C

or
re

ct
)

0

0.2

0.4

0.6

0.8

1

P(estimate)

0.1 0.3 0.5 0.7 0.9

Calibration Measures
ECE = ∑

all buckets bi

∣ bi ∣
n

* ∣ correct(bi) − confidence(bi) ∣

Bactual =
1
n ∑

all n samples x {
pℳ(x, ̂y)2 if prediction ̂y wrong
(1 − pℳ(x, ̂y))2 otherwise

Calibration Measures
ECE = ∑

all buckets bi

∣ bi ∣
n

* ∣ correct(bi) − confidence(bi) ∣

Bactual =
1
n ∑

all n samples x {
pℳ(x, ̂y)2 if prediction ̂y wrong
(1 − pℳ(x, ̂y))2 otherwise

Bref = pbr * (1 − pbr)

Calibration Measures
ECE = ∑

all buckets bi

∣ bi ∣
n

* ∣ correct(bi) − confidence(bi) ∣

Bactual =
1
n ∑

all n samples x {
pℳ(x, ̂y)2 if prediction ̂y wrong
(1 − pℳ(x, ̂y))2 otherwise

Bref = pbr * (1 − pbr)Can’t Cheat!!

Calibration Measures

Bactual =
1
n ∑

all n samples x {
pℳ(x, ̂y)2 if prediction ̂y wrong
(1 − pℳ(x, ̂y))2 otherwise

Bref = pbr * (1 − pbr)

Calibration Measures

Bactual =
1
n ∑

all n samples x {
pℳ(x, ̂y)2 if prediction ̂y wrong
(1 − pℳ(x, ̂y))2 otherwise

Bskill =
Bref − Bactual

Bref

Bref = pbr * (1 − pbr)

Calibration Measures

Bskill =
Bref − Bactual

Bref

Calibration Measures

Bskill =
Bref − Bactual

Bref

Skill scores (between -∞ and 1)

Calibration Measures

Bskill =
Bref − Bactual

Bref

Skill scores (between -∞ and 1)

• Unskilled (always base rate) = 0.0

Calibration Measures

Bskill =
Bref − Bactual

Bref

Skill scores (between -∞ and 1)

• Unskilled (always base rate) = 0.0
• Deutsche Wetterdienst 🌞☔ = 0.07

Calibration Measures

Bskill =
Bref − Bactual

Bref

Skill scores (between -∞ and 1)

• Unskilled (always base rate) = 0.0
• Deutsche Wetterdienst 🌞☔ = 0.07
• 538, Nat’l B’ball Assoc = 0.13

Calibration Measures

Bskill =
Bref − Bactual

Bref

Skill scores (between -∞ and 1)

• Unskilled (always base rate) = 0.0
• Deutsche Wetterdienst 🌞☔ = 0.07
• 538, Nat’l B’ball Assoc = 0.13
• 538, Congressional Election = 0.86

Calibration Measures

Bskill =
Bref − Bactual

Bref

Skill scores (between -∞ and 1)

• Unskilled (always base rate) = 0.0
• Deutsche Wetterdienst 🌞☔ = 0.07
• 538, Nat’l B’ball Assoc = 0.13
• 538, Congressional Election = 0.86

Out of the Box, LLM probabilties are negative skill.

ICSE 2025, to appear

Datasets

33

Datasets

● Function synthesis is 🐁: small, self-contained toy problems

33

Datasets

● Function synthesis is 🐁: small, self-contained toy problems

● DyPyBench dataset consists of thousands of functions with docstrings and running test
suites in a line completion setting

33

Datasets

● Function synthesis is 🐁: small, self-contained toy problems

● DyPyBench dataset consists of thousands of functions with docstrings and running test
suites in a line completion setting

● SStubs4J does not have tests, only exact-match

33

Models

● Each cell ~ the base rate
● Thus All Pass @1 Brier Ref Score for DyPyBench, Codex = 0.33*0.67 = 0.22

34

GPT 3.5, Line Completion

Correctness: Test Passing, Confidence: Avg Per-token probability

GPT 3.5, Line Completion

ECE = 0.15

Correctness: Test Passing, Confidence: Avg Per-token probability

GPT 3.5, Line Completion

ECE = 0.15
Brier (actual) = 0.41

Correctness: Test Passing, Confidence: Avg Per-token probability

GPT 3.5, Line Completion

ECE = 0.15
Brier (actual) = 0.41
Brier (ref) = 0.22

Correctness: Test Passing, Confidence: Avg Per-token probability

GPT 3.5, Line Completion

ECE = 0.15
Brier (actual) = 0.41
Brier (ref) = 0.22
Skill Score = -0.87

Correctness: Test Passing, Confidence: Avg Per-token probability

Recaling the Confidence

Recaling the Confidence
Platt Scaling: fit a logistic regression using
some datapoints to better match the
actual correctness response.

Recaling the Confidence
Platt Scaling: fit a logistic regression using
some datapoints to better match the
actual correctness response.

• RESPONSE: The actual correctness
value (y axis)

Recaling the Confidence
Platt Scaling: fit a logistic regression using
some datapoints to better match the
actual correctness response.

• RESPONSE: The actual correctness
value (y axis)

• PREDICTOR: The model-output
confidence.

Recaling the Confidence
Platt Scaling: fit a logistic regression using
some datapoints to better match the
actual correctness response.

• RESPONSE: The actual correctness
value (y axis)

• PREDICTOR: The model-output
confidence.

• PARAMETERS: Two, scaling value +
bias

Recaling the Confidence
Platt Scaling: fit a logistic regression using
some datapoints to better match the
actual correctness response.

• RESPONSE: The actual correctness
value (y axis)

• PREDICTOR: The model-output
confidence.

• PARAMETERS: Two, scaling value +
bias

Recaling the Confidence
Platt Scaling: fit a logistic regression using
some datapoints to better match the
actual correctness response.

• RESPONSE: The actual correctness
value (y axis)

• PREDICTOR: The model-output
confidence.

• PARAMETERS: Two, scaling value +
bias

GPT 3.5, Line Completion
(Platt rescaling)

ECE = 0.04. (was 0.15)
B (actual) = 0.20. (was 0.41)
B (reference) = 0.22
Skill Score = +0.08. (was -0.87)

Beyond Intrinsic Confidence

Beyond Intrinsic Confidence

• Reflective Verbalized Self Ask: Ask the model, given it’s own
response, to output a probability of correctness.

Beyond Intrinsic Confidence

• Reflective Verbalized Self Ask: Ask the model, given it’s own
response, to output a probability of correctness.

• Reflective True/False Logit: Ask the model if it’s own
response is correct, output True/False and take the logistic
probability of True, normalized with False.

Beyond Intrinsic Confidence

• Reflective Verbalized Self Ask: Ask the model, given it’s own
response, to output a probability of correctness.

• Reflective True/False Logit: Ask the model if it’s own
response is correct, output True/False and take the logistic
probability of True, normalized with False.

• Few-shot: Same as above, except we provide few-shots (both
RAG and random.

Reflective Verbalized
Self-Ask

Reflective Verbalized
Self-Ask

Reflective True/False
Logic

Logit

Reflective True/False
Logic

Logit

Reflective True/False
Logic

Logit

Logit

TL;DR Findings

TL;DR Findings

• Intrinsic: Somewhat decent, after rescaling.

TL;DR Findings

• Intrinsic: Somewhat decent, after rescaling.

• Verbalized Self Ask: Not much better.

TL;DR Findings

• Intrinsic: Somewhat decent, after rescaling.

• Verbalized Self Ask: Not much better.

• True/False Logit: Not much better.

TL;DR Findings

• Intrinsic: Somewhat decent, after rescaling.

• Verbalized Self Ask: Not much better.

• True/False Logit: Not much better.

• Few-shot: RAG with BM25 (next slide)

Few-shot Reflective, for Code Completion

Few-shot Reflective, for Code Completion

Few-shot Reflective, for Code Completion

Future: How to Present?

Future: How to Present?

def Convert2Base7(num):
 if num < 0:
 return '-' + Convert2Base7(-num)
 elif num < 7:
 return str(num)
 else:
 return Convert2Base7(num // 7) + str(num % 7)

Future: How to Present?

def Convert2Base7(num):
 if num < 0:
 return '-' + Convert2Base7(-num)
 elif num < 7:
 return str(num)
 else:
 return Convert2Base7(num // 7) + str(num % 7)

def Convert2Base7(num):
 if num < 0:
 return '-' + Convert2Base7(-num)
 elif num < 7:
 return str(num)
 else:
 return Convert2Base7(num // 7) + str(num % 7)

Fine-grained calibration?

Work underway, please stay tuned.

Fine-grained calibration?

def Convert2Base7(num):
 if num < 0:
 return '-' + Convert2Base7(-num)
 elif num < 7:
 return str(num)
 else:
 return Convert2Base7(num // 7) + str(num % 7)

Work underway, please stay tuned.

Summary

• The “Last Mile” is challenging

• Hypothesis: More information would lead to rational decision
making and better outcomes.

• Well Calibrated Confidences are possible

• Need to do some User Studies. (Collaborators ?)

