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Instructing FMs with prompts

• Prompts are used to instruct the FM on specific tasks
• Replaces, complements, or interacts with traditional programming code

• In-context learning
• Enable new capabilities by augmenting the FM with domain knowledge

• Help generate trustworthy and responsible results

• Evaluate the capabilities and limitations of an FM for a downstream 
task
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The structure of a prompt

• The quality of a prompt depends on how well-written it is
• Different components may be required

• Examples of prompt components:
• Task-related:

• Instruction describes what completion task the model should perform

• Constraints sets boundaries for the contents the model can generate

• Output format determines how the output should be formatted

• Context-related:
• Knowledge provides the model with background information

• Examples provides the model with instances of the desired completion

• Persona provides the model with a specific stereotype identity
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Example of a simple prompt

• A basic prompt expects the FM to complete with the next token

Input prompt (no instruction):

The sky is

Result:

blue

https://www.promptingguide.ai/introduction/basics Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Example of a prompt with instruction

• A prompt can contain instructions to guide the model’s 
generation in a specific way (e.g., to perform a task)

• Many FMs are fine-tuned to follow instructions

Prompt:

Classify the sentiment of the following sentence: The meal

was awesome

Result:

Sentiment: Positive

https://www.promptingguide.ai/ Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Example of a prompt with a constraint

• A prompt can ask the FM to restrict how the generated result 
look like

Prompt:

Classify the following sentence into neutral, negative or positive:

The meal was awesome

Result:

positive

https://www.promptingguide.ai/ Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Examples of more complex prompts

https://arxiv.org/pdf/2308.10620.pdf Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024
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Prompt engineering techniques

• Zero-shot directly instructs the FM to perform a downstream task

• Few-shot provides examples to nudge the model

• Chain-of-thought (CoT) enables complex reasoning through an 

example of intermediate reasoning steps (thoughts)

• Self-consistency improves CoT by exemplifying with several 

reasoning paths

• Use the generations to select the most consistent answer

• Tree-of-thoughts (ToT) explores multiple reasoning paths over 

thoughts arranged in a tree-like structure

• Definition of “thought” depends on the task at hand

• Uses FM to evaluate thoughts and avoid “impossible” ones

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Few-shot prompting

• Provide examples in the prompt to guide the model towards a 
task completion

• Based on the principle of meta-learning
• Model develops a broad set of pattern recognition abilities at training 

time

• Uses those abilities at inference time to rapidly recognize the desired 
task

• Meta-learning is achieved with in-context learning
• Model is conditioned on a few demonstrations of the task

• Completes further instances of the task by predicting the next tokens

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Example of few-shot prompting

Prompt:

Circulation revenue has increased by 5%: Positive 

Panostaja did not disclose the purchase price: Neutral 

Paying off the debt will be extremely painful: Negative 

The acquisition will have an immediate positive impact:

Result:

Positive

https://www.promptingguide.ai/ Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Few-shot prompting improves 
accuracy in benchmark validation

https://arxiv.org/pdf/2005.14165.pdf Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Do “correct” examples matter?

• Suppose that 𝑘 few-shot examples are given with pairs 

(𝑥1, 𝑦1), … , (𝑥𝑘 , 𝑦𝑘)
• Zero-shot: next token 𝑦 is 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝐶 𝑝(𝑦|𝑥), where 𝑥 is the input and 

𝐶 the possible labels

• Input-label mapping refers to whether each input 𝑥𝑖 is labelled 

with a correct label 𝑦𝑖

• Min et al., 2022 shows that input-label mapping has little impact 

to performance

https://arxiv.org/pdf/2202.12837.pdf Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Replacing gold labels with random labels 
doesn’t hurt performance considerably

• Gold-labels: next token 𝑦 is 
𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝐶 𝑝(𝑦|𝑥1, 𝑦1, … , 𝑥𝑘 , 𝑦𝑘 , 𝑥)

• Random-labels: next token 𝑦 is 
𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝐶 𝑝(𝑦|𝑥1, 𝑦1, … , 𝑥𝑘 , 𝑦𝑘 , 𝑥)

• 𝑦𝑖 is 𝐶’s random sample

https://arxiv.org/pdf/2202.12837.pdf Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Concerns when designing few-shot 
prompts

• Distribution of the input text: underlying distribution of 𝑥1, … , 𝑥𝑘
• In-distribution inputs (from training data) in the examples 

substantially improve performance

• Label space: underlying distribution of 𝑦1, … , 𝑦𝑘
• Conditioning on the label space 𝐶 significantly contributes to 

performance gains

• Format of the input-label pairs
• Keeping the format of “input-label pairs” is important

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Few-shot prompting has limited 
reasoning capabilities 

https://arxiv.org/pdf/2201.11903.pdf

Prompt:

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls.

Each can has 3 tennis balls. How many tennis balls does he have

now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to make lunch and

bought 6 more, how many apples do they have?

Result:

The answer is 27.

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Chain-of-thought (CoT) prompting

• A series of intermediate natural language reasoning steps
that lead to the final output

• A prompt consists of triples ⟨input, chain of thought, output⟩

• Explore the ability of language models to perform few-shot 
prompting for reasoning tasks

• Decompose multi-step problems into intermediate steps

• Interpretable behaviour of the model to debug the reasoning path

• Suitable for math problems, commonsense reasoning, etc.

• Requires sufficiently large off-the-shelf language models

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Example of chain-of-thought prompting 

Prompt:
Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis
balls. How many tennis balls does he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 =
11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how
many apples do they have?

Result:
The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 − 20 =
3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Example of a ⟨input, chain of thought, output⟩ triple. The chain-of-thought

component of the prompt is highlighted
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Example of zero-shot chain-of-thought 
prompting 

https://arxiv.org/pdf/2205.11916.pdf

Prompt:

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,

and half of the golf balls are blue. How many blue golf balls are

there?

A: Let’s think step by step.

Result:

There are 16 balls in total. Half of the balls are golf balls. That

means that there are 8 golf balls. Half of the golf balls are blue.

That means that there are 4 blue golf balls.

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Self-consistency

• Complex reasoning tasks typically admit multiple reasoning paths

• Three-step procedure:
1. Prompt the FM using chain-of-thought (CoT) prompting

2. Replace the “greedy decode” in CoT by sampling from the FM’s decoder to 
generate a diverse set of reasoning paths

3. Average out the reasoning paths and choose the most consistent answer

• Characteristics:
• Entirely unsupervised

• Works off-the-shelf with pre-trained language models

• Requires no additional human annotation

• Avoids any additional training, auxiliary models or fine-tuning

• Not an ensemble technique as it uses a single FM

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Self-consistency explained 

https://arxiv.org/pdf/2203.11171.pdf Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Example of self-consistency prompting
Prompt:

Q: Michael had 58 golf balls. On Tuesday, he lost 23 golf balls. On Wednesday, he lost 2

more. How many golf balls did he have at the end of Wednesday?

A: Michael initially had 58 balls. He lost 23 on Tuesday, so after that he has 58 − 23 = 35

balls. On Wednesday he lost 2 more so now he has 35 − 2 = 33 balls. The answer is 33. 

(... more CoT examples ...)

Q: When I was 6 my sister was half my age. Now I’m 70 how old is my sister?

A:

Result 1:

When I was 6 my sister was half my age, so she was 3. Now I am 70, so she is 70 − 3 = 67.

The answer is 67.

Result 2:

When the narrator was 6, his sister was half his age, which is
3. Now that the narrator is 70, his sister would be 70 - 3 = 67 years old. The answer is 67.

Result 3:

When I was 6 my sister was half my age, so she was 3. Now I am 70, so she is 70/2 = 35. The

answer is 35.h
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Tree-of-thought (ToT) prompting

• Allows FMs to explore multiple reasoning paths over thoughts

• Frames a problem as a tree search, where each node is a state 
representing input and the sequence of thoughts

• Definition of thought depends on the problem 

• Design of a ToT prompt involves four steps:
1. Decompose the intermediate process into thought steps

2. Generate potential thoughts from each state

3. Heuristically evaluate states

4. Search algorithm

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Thought decomposition in ToT prompting

• ToT leverages problem properties to design and decompose 
intermediate thought steps

• A couple of words (Crosswords)

• A line of equation (Math solving)

• A whole paragraph of writing plan (Creative Writing)

• A thought should be:
• Small enough so that FMs can generate promising and diverse 

samples (a whole book is too big to be coherent)

• Big enough so that FMs can evaluate its prospect toward problem-
solving (one token is usually too small to be evaluated)

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Thought generation in ToT prompting

• Given a tree state 𝑠 = [𝑥, 𝑧1, … , 𝑧𝑖], there are two strategies to 
generate 𝑘 candidates for the next thought step

1. Sample thoughts from a CoT prompt

2. Generate thoughts sequentially using a propose prompt

Propose prompt for solving the Game of 24

(... CoT examples ...) 

Input: 4 9 10 13 

Possible next steps:

Result:

4 + 9 = 13 (left: 10 13 13)
10 - 4 = 6 (left: 6 9 13)
(... other thoughts ...)
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State evaluator in ToT prompting

• Heuristic that determines which states to keep exploring and in which order

• Two strategies to reason about states:

1. A value prompt reasons about the state 𝑠 to generate a scalar value 𝑣 or a 

classification that could be heuristically turned into a value

2. A vote prompt deliberately compare different states w.r.t. their value

Value prompt for solving the Game of 24

Evaluate if given numbers can reach 24 (sure/likely/impossible) 10 14: 10 + 14 = 24.
sure
(... more examples ...)

10 13 13

Result:

(13 - 10) * 13 = 3 * 13 = 39
10 + 13 + 13 = 36 There is no way to obtain 24 with these big numbers. 
impossibleh
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Voting mechanism in ToT prompting

https://arxiv.org/pdf/2305.10601.pdf

A ToT with depth 2 (and only 1 intermediate thought step) for the Creative Writing task. The FM first
generates k = 5 plans and votes for the best one, then similarly generate k = 5 passages based on the
best plan then vote for the best one. A simple zero-shot vote prompt (“analyze choices below, then
conclude which is most promising for the instruction”) is used to sample 5 votes at both steps

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Search algorithm in ToT prompting

• Plug and play of different search algorithms depending on the 
tree structure

• Two relatively simple search algorithms:
• Breadth-first search (BFS) maintains a set of the 𝑏 most promising 

states per step

• Depth-first search (BFS) explores the most promising state first, until:
• The final output is reached (𝑡 > 𝑇)

• The state evaluator deems it impossible to solve the problem from the current 
state

https://arxiv.org/pdf/2305.10601.pdf Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



ToT implementation 

➢ The prompter agent instructs the LLM to generate an 

intermediate solution instead of the full solution in a single shot.

The checker module checks the validity of the generated 

intermediate solution. If it passes, the intermediate solution is 

stored in the memory module. Otherwise, the ToT signals the

prompter agent to enrich the prompt and send it to the LLM again

➢ Thoughts deemed as invalid by the

checker module are backtracked to the 

parent node.

➢ Nodes that don’t lead to a final solution

are also backtracked

https://arxiv.org/pdf/2305.08291 Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



IO vs. CoT vs. self-consistency vs. ToT
prompting

https://arxiv.org/pdf/2305.10601.pdf Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024
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Decoding strategies

•Autoregressive and Transformer models iteratively compute the

next token 𝑠𝑡 of a sequence

•Each iteration outputs a probability distribution

𝑝(𝑆𝑡|𝑠1, … , 𝑠𝑡−1, 𝑣1, … , 𝑣𝑇𝑠𝑟𝑐 )

• Priors include source tokens 𝑣𝑖 and target tokens 𝑠𝑗
• 𝑆𝑡 is a random variable of the possible target tokens 𝑠𝑡 at position 𝑡

•Generate all possible combinations of output tokens 

(exhaustive search) is computationally hard

𝑝(𝑆1 = 𝑠1, … , 𝑆𝑇 = 𝑠𝑇 |𝑣1, … , 𝑣𝑇𝑠𝑟𝑐)

•Decoding uses a search algorithm that finds an approximate 

sequence 𝑠1, … , 𝑠𝑇
Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Sampling techniques for decoding

• Random sampling selects the next token according to all 
predicted probabilities

• Can generate a sequence of tokens with low total probability

• Top-k sampling selects the next token from one of the k

• tokens with highest probability
• Probability mass is redistributed among the k tokens and one is 

randomly selected

• Top-p sampling selects the next token from the set of tokens 
with probability above a threshold p

• Randomly selected token from redistributed probabilities
• Avoids rare tokens by limiting the probability mass

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Search algorithms for decoding

• Greedy search selects the token with the highest probability at each generation step 𝑡

• Finds the sequence of most likely tokens, not the most likely sequence of tokens, leading to 

suboptimal solutions

• Beam search keeps a fixed number of 𝑘 possible sequences of length 𝑡 and at each 

iteration:

• Adds 𝑘 different tokens 𝑠𝑡+1 with the highest conditional probability to each of the 𝑘 sequences:

𝑝(𝑆𝑡+1 = 𝑠𝑡+1|𝑠1, … , 𝑠𝑡−1, 𝑣1, … , 𝑣𝑇𝑠𝑟𝑐)

• From all 𝑘 × 𝑘 sequences, keep only 𝑘 sequences with the highest total probability: 

𝑝(𝑠1, … , 𝑠𝑡+1|𝑣1, … , 𝑣𝑇𝑠𝑟𝑐)

• When an end-of-sequence token is found, the associated sequence is added to the final candidate 

list

• The algorithm picks the sequence with the highest probability

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Beam search example

https://arxiv.org/abs/2302.08575

At every iteration, Beam search records the 𝑘 partial sequences with the highest probability.

Beam search continues until it reaches the end-of-sentence token for each branch.

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Some decoder parameters

• Temperature (0.0 − 1.0) controls the weights of the tokens 
other than the most likely one

• Determines the level of determinism in the generated sequences

• The lower the temperature, the more deterministic the results

• Adjusted according to the application (e.g., Q&A vs. poem generation)

• Top-p also controls the level of determinism in the generated 
sequences

• Same 𝑝 parameter of top-p sampling

• A good practice is to change one at once when setting 
hyperparameters

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Outline

• Basic prompt concepts

• Prompt engineering techniques

• Sampling and decoding

• Fragility of prompts

• Prompt evolution and management

• Prompt compilers

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Current prompt engineering practices are very fragile 
and sensitive, leading to low portability

• Prompts are not portable across FMs 
• For example: consider this prompt – "Where is the capital of Japan?"

• Bloomz: "Tokyo"

• Alpaca-Chinese: "Tokyo. The unit of currency in Japan is the yen, abbreviated as JPY or Yen..."

• Vicuna: "2. What year was the founding of the United States?“

• Prompts are not portable, even across different versions of a FM
• For the same prompt, GPT 3.5  and 4 produce completely different results. 

• Even the same FM behaves differently over time for the same prompt

https://arxiv.org/pdf/2307.09009.pdf Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Fragility of prompts

• FMs show performance variability based on the formatting, ordering, and 
choice of training examples in prompts

• FMs are sensitive to subtle formatting changes
• Format can include specific wording, separators, spacing, casing, and the 

organization of fields in the prompt

• E.g.: switching from a colon “:” to a dash “-”, using uppercase vs. lowercase for 
instructions

• The order of few-shot examples can significantly impact model accuracy
• Certain permutations perform better than others

• E.g.: a positive example placed last in a sentiment analysis prompt might lead to a 
bias toward positive classifications (recency bias)

• Sensitivity to formatting is not consistent across different models or tasks
• Format performance weakly correlates between models

• Invalidates the comparison of models with an arbitrarily chosen, fixed prompt format 
Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Slight modifications in prompt format leads 
to different model performance for a task

Performance differences of up to 76 accuracy points when evaluated using LLaMA-2-13B

https://arxiv.org/pdf/2310.11324 Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Factors influencing sensitivity

• Majority label bias: Lead the model to predict training (few-shot)  
examples that appear frequently in the prompt

• Recency bias: FMs tend to give more weight to information presented 
closer to the end of the prompt

• Earlier information might be more critical but pushed out of focus by newer 
content

• Tasks like long-form reasoning or multi-step processes might be affected

• Common token bias: leads the model to prefer answers that are 
frequent in its pre-training data

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Why Prompt Fragility Matters

• Generalization: Fluctuations raise questions about the model's ability 
to generalize

• Improvements in reported performance could sometimes be due to optimal 
prompt engineering rather than fundamental improvements

• FMs evaluation with prompting-based methods should report a range of 
performance across plausible prompt formats 

• Reliability: Unstable outputs make LLMs less reliable in real-world 
applications, where users might input prompts in different ways

• User Experience: Inconsistent or unexpected model behaviour leads 
to bad user experience in practical applications

• Reduce trust in FM-powered systems

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Quantifying prompt fragility

• Performance spread: higher spreads indicate more fragility to variance within the 
space of plausible prompt formats

• Given a set of plausible formats {𝑝1, … , 𝑝𝑛}, a dataset 𝒟, and a scalar metric 𝑚
• The performance spread is max

𝑖
𝑚(𝑝𝑖, 𝒟) − min

𝑖
𝑚(𝑝𝑖 , 𝐷)

• Sensitivity: measures changes of predictions across rephrasings of the prompt
• Does not require access to ground truth labels, which are often hard to acquire 
• Guide to compare the “robustness” of different LLMs to variations of the prompt
• Highly sensitive FMs may require significant prompt optimization efforts

• Consistency: measures how predictions vary across rephrasings for elements of 
the same class

• Being consistent suggests that prompt rephrasings cause similar mistakes across all samples 
of class 𝑦, hence a careful tuning of the prompt is required

• An inconsistent LLM behaves unpredictably among samples of the same class, where the 
same prompt rephrasings causes different mistakes 

• Might indicate that the problem is not the prompt, rather the classifier itself

https://arxiv.org/pdf/2310.11324 https://arxiv.org/pdf/2406.12334 Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



How does formatting impact different 
models and few-shot settings?

For each evaluation task, 10 
plausible prompt formats 
are sampled to calculate 
spread.

Significant performance 
spread across tasks, with a 
median spread of 7.5 
accuracy points across 
choices in the model and 
the number of few-shot 
examples.

https://arxiv.org/pdf/2310.11324 Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



How does formatting impact different 
models and few-shot settings?

Significant performance spread 
regardless of increased model size 

Significant performance spread 
regardless of instruction tuning

Significant performance spread 
regardless of # few-shot examples

https://arxiv.org/pdf/2310.11324 Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



How does the order of few-shot 
examples affect sensitivity?

https://aclanthology.org/2022.acl-long.556.pdf

Although 
beneficial, 
increasing model 
size does not 
guarantee low 
variance. Four-
shot performance 
for 24 different 
sample orders 
across different 
sizes of GPT-
family models 
(GPT-2 and GPT-
3) for the SST-2 
and Subj 
datasets. 

Adding training samples 
does not significantly 
reduce the variance. Order 
sensitivity using different 
numbers of training 
samples. 

Performant prompts are 
not transferable across 
models. Training sample 
permutation performance 
correlation across different 
models (for all 24 possible 
permutations of four 
examples).

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Context window sensitivity

• Context window refers to the (maximum) number of tokens that an FM 
(can) process at once

• Truncation of inputs: If the context window is exceeded, the model 
truncates the text from the beginning or the end of the prompt

• Loss of critical context necessary to accurately perform the task
• Erroneous responses as the model might lack the necessary information to generate 

a meaningful answer

• Contextual degradation: FMs tend to degrade in performance with long 
contexts

• Balancing comprehensiveness and brevity in prompts becomes crucial

• Memory and computation overheads: memory and computational 
resources requirements are proportional to the context window

• Make inference slower and more resource-intensive
• Practical constraint in real-world applications

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Mitigating context window sensitivity

• Condensed summaries: Asking the model to summarize earlier sections of 
the input within the context window to preserve essential details

• Implies extra inference calls to the FM while maintaining interaction, increasing 
overall costs

• Prompt decomposition: Breaking the prompt into smaller, logically 
consistent segments

• Maintains coherence while adhering to the context window
• Not effective for tasks requiring long-range dependency tracking

• A solution is to introduce overlapping segments when breaking long prompts
• Ensures that key pieces of information from previous segments are carried forward into 

subsequent segments

• Memory augmentation: Using external knowledge bases to retain and 
recall important information over longer interactions

• Reduces dependency on limited context window to keep past interactions
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Mitigating context window sensitivity 
in RAG systems

https://arxiv.org/pdf/2301.12652.pdf

Given an input context, in-context RAG first retrieves the top-k relevant documents from an

external corpus using a retriever component. Then it prepends each document separately to

the input context and ensembles output probabilities from different passes.
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Prompt fragility and FMware engineering, 
maintenance and evolution

• Prompt sensitivity has significant implications for the engineering, 
maintenance, and evolution of FMware

• Prompt drift: As the FM evolves (e.g., through fine-tuning, retraining, or 
upgrades to newer model versions), the optimal prompt that once worked 
well may no longer yield the same results

• Routine updates to models, prompts, or surrounding software systems can lead to 
unexpected changes in application behaviour

• Requires continuous monitoring and maintenance to ensure the prompt remains 
effective

• Testing prompt results becomes paramount
• Teams need to regularly test prompts across new model versions and adjust as 

necessary
• Dual-testing frameworks run prompts against both old and new models during the 

transition phase to ensure compatibility
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Manual prompt-tuning

• A systematic process for iteratively designing, testing, and optimizing 
prompts for FMs

• Especially useful in the early stages of building FMware, where prompt behaviour 
needs to be customized and controlled.

• Iterative by nature: Manual prompt-tuning is inherently iterative
• Often requires multiple cycles of testing and refinement to achieve optimal results

• Human-centric process: Relies on human expertise to analyze, understand, 
and adjust prompts

• Makes it more adaptable than purely automated processes but also more resource-
intensive

• Balancing approach: It balances prompt specificity with generality
• Overly specific prompts might limit the model’s flexibility
• Overly general prompts might reduce performance

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Manual prompt-tuning lifecycle

1. Define task objectives: define what the FM is supposed to achieve
• Anything from generating coherent text, extracting specific information, classifying sentiment, or answering questions accurately

• Establish criteria for success (e.g., accuracy, relevance, coherence) and the metrics to measure it (e.g., precision, recall, BLEU score)

2. Design initial prompts: craft basic prompts based on the task objectives
• Experiment with variations by changing phrasing, wording, and structure

3. Test prompts in controlled settings: use a test dataset that represents real-world use cases to evaluate each prompt's performance
• Measure the model’s outputs based on predefined metrics

• Conduct qualitative analysis to understand how well the prompt guides the model and whether the outputs are sensible and task-relevant

4. Iterate and optimize: identify which prompt variations work best and which need adjustments
• Adjust the prompts to improve performance

• Retest the modified prompts using the same metrics and datasets

5. Deploy prompts in real-world scenarios: integrate prompts into the real-world application or use case
• Continuously monitor model performance with the deployed prompts

• Obtain feedback from users to understand how well the prompts meet their needs

6. Adapt prompts based on feedback and new data: incorporate user feedback and error analysis to improve prompts
• Ensure that prompts remain aligned with user expectations and real-world inputs

7. Maintain and update prompts: conduct periodic audits to ensure prompts continue to perform as expected and haven’t drifted from the desired 
outcomes

• Treat prompts like code by versioning and documenting changes

• Maintain a prompt repository that includes versions, adjustments, rationales, and performance outcomes

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Prompt debugging

• Process of analyzing and refining prompts to identify, understand, and 
fix issues that affect the performance or reliability of FMs

• Aims to improve output quality by identifying problematic areas in prompt 
design and making necessary adjustments

• Developers need to adopt new debugging methods that allow them 
to analyze how slight changes in prompt phrasing affect outcomes

• Failures might not stem from the underlying model but from prompt 
misalignment

• Developers need to pinpoint areas of the prompt that require adjustments
• Prompt debugging tools identify which parts of the prompt contributed to a particular 

outcome
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Sequence Salience UI overview. The user can: (1) enter a prompt or edit an 
existing one, and optionally specify a target sequence to explain (2) select 
a target sequence to explain (3) control the selection granularity (tokens, 
words, sentences, lines, or paragraphs), visual display density, and a choice 
of salience methods and (4) select a segment, which triggers the system to 
compute salience with respect to that segment, showing the scores as a 
heatmap over preceding segments. Darker colors mean that the segment is 
more influential or salient to the selected target

Side-by-side, sentence-level Sequence Salience maps 
comparing results for two variants of a GSM8K example. The 
left side shows the original example and shows a diffuse 
salience map across the numerical values. The right side 
modifies the prompt to remove the calculation annotations, 
yielding a more focused salience map over the operands and 
relevant answers, which in turn reveals issues with specific 
arithmetic calculations. 

Prompt debugging with explainability 
techniques
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Systematic testing of prompting results

• Given a prompt, systematically compare the output of the FM against 
test cases

• Test properties of the generated results as in traditional unit tests 
(e.g., equals, contains, matches)

• FMs can be used to assert more complex properties
• Property evaluator FMs usually have higher precision than the evaluated

• Asserting a property is easier than generating it, so FMs can also evaluate 
their own results

• Assertions with FMs produce a test failure score that is tested 
against thresholds (Ribeiro and Ludemberg, 2022)

• Scores can have weight when averaging test results

https://aclanthology.org/2022.acl-long.230.pdf Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Community sharing of prompt templates

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Outline

• Basic prompt concepts

• Prompt engineering techniques

• Sampling and decoding

• Fragility of prompts

• Prompt evolution and management

• Prompt compilers

Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



We envision prompting to be replaced 
with prompt compilers 
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How do prompt compilers generally 
work?
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PromptBreeder improves itself using a 
genetic algorithm

• Uses a genetic algorithm to mutate a 
population of task-prompts using five 
classes of mutation

• Evaluate each prompt for fitness on a 
random batch of training set

• This process is repeated over multiple 
generations to evolve task prompts, 
leading to prompts that are better 
adapted to a domain problem

• “Self-referential” process: mutation-
prompts also undergo mutation

https://arxiv.org/pdf/2309.16797 Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



PromptBreeder’s mutation operators

• Direct mutation: directly generate a new task-prompt 𝑃’ from either:
• One existing task-prompt 𝑃

• Mutation prompt: “Say the instruction again in another way. DON’T use any of the words in 
the original instruction there’s a good chap.” + Parent task prompt: “Solve the math word 
problem, giving your answer as an Arabic numeral. INSTRUCTION MUTANT:”

• A general prompt that encourages free-form generation of new task-prompts
• Problem description 𝐷: “Solve the math word problem, giving your answer as an Arabic 

numeral” + Prompt: “A list of 100 hints:”

• Estimation of Distribution (EDA) mutation: provides a list of task-prompts 
to the FM and ask it to continue this list with new task-prompts

• Filter the population of prompts on the basis of BERT embedding cosine similarities 
between each other

• An individual is not included in the list if it is more than 0.95 similar to any other 
entry in the list, thus encouraging diversity 
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EvoPrompt’s genetic operators

https://arxiv.org/pdf/2309.08532

• In Step 1, FMs perform 
crossover on the given 
two prompts (words in 
orange and blue are 
inherited from Prompt 
1 and Prompt 2, 
respectively)

• In Step 2, FMs perform 
mutation on the 
prompt
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EvoPrompt’s differential evolution 
approach

https://arxiv.org/pdf/2309.08532

• In Step 1, FMs find the different 
parts (words in ■ and ■) between 
Prompt 1 and Prompt 2

• In Step 2, LLMs perform mutation 
(words in ■ )

• Next, LLMs incorporate the current 
best prompt as Prompt 3 with the 
mutated results in Step 2, to 
generate a new prompt

• Finally, LLMs perform crossover 
upon the current basic prompt 𝑝𝑖
and the generated prompt in Step 3
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Automatic Prompt Engineer (APE)

• Uses an FM to generate:
• Candidate prompt solutions
• A set of input-output demonstrations 
𝐷𝑡𝑟𝑎𝑖𝑛 = (𝑄, 𝐴) for solution evaluation

• Evaluates each candidate solution 𝜌 by 
prompting the FM with the concatenation 
of 𝜌 and 𝑄

• Compares the generated result with 𝐴

• Can also run an Iterative Monte Carlo 
Search algorithm 

• Applies a paraphrasing prompt to the 
candidates solution

• Filter out candidates with low score

https://arxiv.org/pdf/2211.01910.pdf Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Prompt programming model and compiler
• DSPy introduces a programming model for FM programming that can express 

sophisticated FM pipelines
• Represents FMware as a computation graph of constructs

• Modules perform common prompt operations like reasoning procedures (e.g., Chain of Thought)

• Signatures define a module’s input and expected outputs

• Accompanied by a self-improving compiler 
• Takes as input a “training set”, optimization metric, and the FMware program

• Automatically finds the optimal composition of  prompting, finetuning, reasoning  technique and 
data augmentation
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SAMMO: Symbolic prompt program 
search

• SAMMO represents FMware programs as “symbolic prompt 
programs”

• DAGs with each node indicating an arbitrary function and an edge 
indicating a function call

• Uses metaprogramming to mutate the associated DAG with the 
FMware program

• E.g., to change the format of a prompt or remove a node from the DAG

• Uses labelled samples to evaluate the candidate solutions 
during the search procedure

• Search can be enumerative, for explicit search spaces, or 
iterative, for implicit search spaces
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SAMMO’s framework stack and 
mutation operators

SAMMO is a flexible 
framework for structured 
prompt optimization, and 
offers two classes of search 
algorithms depending on the 
set of mutators used. 

Symbolic prompt program for 
a binary classification task, 
where each node is a function 
with attributes and 
dependencies (children). SPP 
allows for structural changes 
(e.g., DELETENODE) and 
attribute-based changes (e.g., 
CHANGEFORMAT) which, after 
applying, result in the mutated 
prompt (right). 

https://arxiv.org/pdf/2404.02319 Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



Textual gradient-descent approaches

• ProTeGi simulates a “gradient-descent” 
approach to optimize prompts

• In a “forward” step, it uses a “mini-batch” of 
input data with a reflection prompt to generate 
“gradients”

• A summary, in natural language, of the associated 
“error” with the prompt under optimization for each 
of the instances of the mini-batch

• On the “backpropagation” step, a delta-prompt 
is used to edit the prompt under optimization 
toward the direction of the gradient

• Observe the error summary generated in the forward 
step

• A beam search is finally used to search over the 
space of candidate prompts

https://arxiv.org/pdf/2305.03495 Cogo & Hassan, AIware Leadership Bootcamp, Toronto, Canada, 2024



TextGrad: Automatic textual differentiation

https://arxiv.org/pdf/2406.07496

• TextGrad describe an FMware program with a syntax that resembles 
that of PyTorch
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Prompt compilers: the road ahead

1. Establish quality programming 
constructs for representing FMware
programs

2. Consolidate the forms of 
compilation that involves not only 
prompt templates but all free 
parameters of an FMware, including 
better support for agent-based 
applications

3. Identify the set of most effective 
heuristics to search the space of 
FMware parameters

4. Construct sets of gold labels to 
evaluate candidate solutions and 
guide the search procedure during 
compilation

5. Assure the quality of an FMware
application, failing compilation when 
quality thresholds are not met

6. Reduce the cost and improve the 
efficiency of compilers

7. Make compilation reproducible

8. Enable user-defined, multiple 
concurrent objectives to be 
optimized during compilation

9. Improve the interoperability 
between compilers

10. Build community-sharing platforms 
of compilation traces such that this 
information can be used as a 
feedback signal to improve 
compilation.
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